
Data Structures and Algorithm 2022

1

Data Structures and Algorithm 2022

2

Unit: I
Introduction and Overview: Basic Terminology – Data Structures – Data Structure

Operations –Mathematical Notations and Functions – Control Structures – Algorithms:

Time-space Trade-off –Complexity of Algorithms – Asymptotic Notations – Arrays –

Introduction – Linear Array, Representation of Linear Array in Memory, Traversing

Linear Arrays, Inserting and Deleting, Two Dimensional Arrays – Representation of Two

Dimensional Array in Memory.

Data Structures:

A data structure is a specialized format for organizing, processing, retrieving and storing

data.Data structures refer to data and representation of data objects within a program, that is,

the implementation of structured relationships. A data structure is a collection of atomic and

composite data types into a set with defined relationships.

The term Data Structure refers to the organization of data elements and the interrelationships

among them.

Data Structure is a way to store and organize data so that it can be used efficiently.

BASIC TERMINOLOGY, ELEMENTARY DATA ORGANIZATION:

Data Structures and Algorithm 2022

3

LINEAR Data Structure Array Data Structure:

Data Structures and Algorithm 2022

4

Linked List Data Structure

Stack Data Structure

Data Structures and Algorithm 2022

5

Queue Data Structure

NON-LINEAR Data Structure

Tree Data Structure And Algorithms

Data Structures and Algorithm 2022

6

Graph Data Structure And Algorithms

Data Structures and Algorithm 2022

7

DATA STRUCTURE OPERATIONS

FOUR MAJOR OPERATIONS

TRAVERSING/VISITING:

▪ Accessing each record exactly once so that certain items in the record may be

processed.

▪ SEARCHING:

 Finding the location of the record with a given key value, or finding the locations of

all records which satisfy one or more conditions.

▪ INSERTING: Adding a new record to the structure.

▪ DELETION: Removing a record from the structure.

▪ OPERATIONS USED IN SPECIAL SITUATIONS

▪ SORTING: Arranging the records in some logical order. (Numerical/Alphabetical)

▪ MERGING:Combining records in two different sorted files into a single sorted file.

▪ OTHER OPERATIONS

Copying , concatenation , etc.

Data Structures and Algorithm 2022

8

Data Structures and Algorithm 2022

9

Data Structures and Algorithm 2022

10

Data Structures and Algorithm 2022

11

Data Structures and Algorithm 2022

12

Data Structures and Algorithm 2022

13

Data Structures and Algorithm 2022

14

Data Structures and Algorithm 2022

15

Asymptotic Notations

 Asymptotic notations are the mathematical notations used to describe the

running time of an algorithm when the input tends towards a particular

value or a limiting value.

 There are mainly three asymptotic notations:

1. Big-O notation

2. Omega notation

3. Theta notation

Data Structures and Algorithm 2022

16

ARRAY:

Data Structures and Algorithm 2022

17

INTRODUCTION:

➢ Data structures are classified as either linear or non – linear.

➢ The linear relationship between the elements represented by means of sequential

memory locations. These linear structures are called arrays.

➢ The operations performed in an array are,

➢ Traversal – Processing each element in the list.

➢ Search – Finding the location of the element with a given value or the record with a

given key.

➢ Insertion – Adding a new element to the list.

➢ Deletion – Removing an element from the list.

➢ Sorting – Arranging the elements in an order.

➢ Merging – Combining two lists into a single list.

LINEAR ARRAYS:

o A linear array is a list of a finite number n of homogenous data elements (data elements

of same type).

o The elements of the array are referenced by an index set consisting of n consecutive

numbers.

o The elements of the array are store respectively in successive memory locations.

o The number n of elements is called the length or size of the array.

o The index set consists of the integers 1, 2,…. ,n.

o The length or the number of data elements of the array can be obtained from the index

set by the formula,

Length = UB-LB+1

o UB – largest index called upper bound.

o LB – smallest index called lower bound.

Length = UB when LB = 1

➢ The elements of an array A can be denoted by:

o Subscript notation : A1,A2,A3,….An

o Paranthesis notation : A(1),A(2),A(3)…..A(N)

o Bracket notation : A[1],A[2],A[3]….A[N]

➢ Example: Let DATA be a 6 – element linear array of integers such that

• DATA [1] = 47 DATA [2] = 56 DATA [3] = 29

• DATA [4] = 35 DATA [5] = 87 DATA [6] = 15

➢ Array can be represented by

Data Structures and Algorithm 2022

18

REPRESENTATION OF LINEAR ARRAYS IN MEMORY:

➢ Let LA be a linear array in memory of the computer

 LOC (LA [K]) = address of the element LA [K] of the array LA.

Data Structures and Algorithm 2022

19

➢ The elements of LA are stored in memory cells.

➢ The computer keep track only of the address of the first element of LA , denoted by

Base(LA) called the base address of LA.

➢ Using this the address is calculated. The formula is

 LOC(LA[K]) = Base(LA)+w(k-lower bound)

➢ w = number of words per memory cell for the array LA.

➢ Example: Consider the array DATA , Base(DATA)=200 and w=4 words per memory

cell for DATA.

 Then LOC(DATA[47])=200

 LOC(DATA[56]=204

 LOC(DATA[29]=208….

TRAVERSING LINEAR ARRAYS:

➢ Accessing and processing (visiting) each element of array exactly once.

➢ Algorithm using repeat while loop.

o [Initialize counter] set K=LB

o Repeat steps 3 and 4 while K UB

o [visit element]apply PROCESS to LA[K].

o [Increase counter] set K=KH

Data Structures and Algorithm 2022

20

➢ [End of step 2 loop].

➢ Exit.

➢ Algorithm using repeat for loop

➢ Repeat for K=LB to UB

➢ Apply PROCESS to LA[K]

➢ [End of loop]

➢ Exit

 E.g.: array AUTO records the number of automobiles sold each year from 1932 through

1984.

Data Structures and Algorithm 2022

21

INSERTING AND DELETING:

Data Structures and Algorithm 2022

22

Data Structures and Algorithm 2022

23

Two - Dimension Array:

A two-dimension m x n array, A is it collection of m.n data elements such that each elements

is specified by pair of integers (such as J,K) called subscripts, with the property that,

1<= J <= m , 1<= K = n

There is a standard way of drawing a two-dimensional m x n array A where, the elements of

A form a rectangular array with m rows and n columns and where, the elements A[J.K] <

appears in row J and column K,

Data Structures and Algorithm 2022

24

Representation of two-dimensional array in memory:

➢ Let, A be a two-dimensional array m x n array. Although A is pictured as a

rectangular array of elements with m rows and n columns, the array will be

represented in memory by a block m.n sequential memory location. Specifically, the

programming language will store the array A either,

➢ column by column is called column major order or

➢ Row by row, in row major order

➢ Given Fig. 3. shows these two ways when A is a two-dimensional 3 x 4 array. We

emphasize that the particular representation used depends upon the programming

language, not the user.

➢ Recall that, for a linear array, the computer does not keep track of the address

LOC(LA[K]) of every element LA[K] of LA, but does keep track of Base (LA) the

address of the first element of LA. The computer uses the formula.

LOC[LA[K]] = Base(LA) +W(K-1)

Data Structures and Algorithm 2022

25

For 3x4 array Column Major Order (CMO)

Data Structures and Algorithm 2022

26

Unit: II
Stacks- Array Representation of Stacks – Operations on Stack – Arithmetic Expressions:

Polish Notation– Reverse Polish Notation – Evaluation of a postfix expression –

Transforming Infix Expression into Postfix – Recursion – Queues – Representation of

Queues – Operations on Queues – Deques.

2.1 STACK DEFINITION

A stack is an ordered collection of homogeneous data elements where the insertion and deletion

operations take place at one end only. The insertion and 'deletion operations in the case of a

stack are specially termed PUSH and POP, respectively, and the position of the stack where

these operations are performed is known as the TOP of the stack. An element in a stack is

termed an ITEM. The maximum number of elements that a stack can accommodate is termed

SIZE. Figure shows a typical view of a stack data structure.

2.2 ARRAY REPRESENTATION OF STACKS : A stack may be represented in the

memory in various ways. There are two main ways: using a one-dimens iona l array and

a single linked list.

Array Represe ntation of Stacks : First we have to allocate a memory block of suff

icient s ize to accommodate the full capacity of the stack. Then, starting from the first location

of the memory block, the items of the stack can be stored in a sequentia l fashion.

In Figure , Item i denotes the ith item in the stack; l and u denote the index range of the array

in use; usually the values of these indices are 1 and SIZE respectively. TOP is a pointer to point

the pos ition of the array up to which it is filled w ith the items of the stack. With this

Data Structures and Algorithm 2022

27

Representation, the following two ways can be stated:

Linke d List Represe ntation of Stacks : Although array representation of stacks is very
easy and convenient but it a llows the representation of only fixed sized stacks. In several
applications, the size of the stack may vary dur ing program execution. An obvious
solution to this problem is to represent a stack using a linked list.

A single linked list structure is sufficient to represent any stack. Here, the DATA field is
for the ITEM, and the LINK field is, as usua l, to point to the next' item. Above Figure b
depicts such a stack using a single linked list.

In the linked list representation, the first node on the list is the current item that is the
item at the top of the stack and the last node is the node containing the bottom-most item.
Thus, a PUSH operation w ill add a new node in the front and a POP operation will remove
a node from the front of the list.

2.3 OPERATIONS ON STACK

The basic operations required to manipulate a stack are:

 PUSH:To insert an item into a stack,

 POP:To remove an item from a stack, STATUS: To know the present state of a stack

Data Structures and Algorithm 2022

28

Here, we have assumed that the array index varies from 1 to SIZE and TOP points
the location of the current top-most item in the stack. The following algorithm Pop_
Array defines the POP of an item from a stack which is represented using an array A.

Now let us see how the same operations can be defined for a stack represented
with a single linked list.

Arithmetic Expressions: An arithmetic expression consists of operands and operators.
Operands are variables or constants and operators are of various types such as
arithmetic unary and binary operators and Boolean operators. In addition to these,
parentheses such as '(' and ')' are also used.

Data Structures and Algorithm 2022

29

Thus, with the below rules of precedence and associativity of operators, the
evaluation will take place for the above-mentioned expression in the sequence
(sequence is according to the number 1, 2, 3, ... , etc.)

Example: Suppose we want to evaluate the following parenthesis free

arithmetic expression 2 ↑3 + 5 * 2 ↑ 2 -12 /6

First we evaluate the exponentiation to obtain 8 + 5 * 4 -12/6

Then we evaluate the multiplication and division to obtain 8 + 20 -2. Last we

valuate the addition and subtraction to obtain the final result, 26. Observe that

the expression is traversed three times, each time corresponding to a level of

precedence of the operations.

2.4 POLISH NOTATION

For most common arithmetic operations, the operator symbol is placed

between its two operands. For example, A+B C-D E*F G/H. This is called

infix notation.

Polish notation, named after the Polish mathematician Jan Lukasiewicz, refers

to the notation in which the operator symbol is placed before its two operands.

For example, +AB, -CD, *EF, /GH

We translate, step by step, the following infix expressions into polish notation

using brackets to indicate a partial translation:

(A+B)*C = [+AB]*C=*+ABC

A+(B*C) = A+[*BC]=+A*BC

 (A+B)/(C-D) = [+AB]/[-CD]=/+AB-CD

The fundamental property of polish notation is that the order in which the

operations are to be performed is completely determined by the positions of

the operators and operands in the expression.

Data Structures and Algorithm 2022

30

2.5 REVERSE POLISH NOTATION refers to the analogous notation in which the
 operator symbol is placed after its two operands: AB+ , CD-, EF*,GH/.

Again, one never needs parentheses to determine the order of the operations in any
arithmetic expression written in reverse Polish notation.

The computer usually evaluates an arithmetic expression written in infix notation in
two steps.
First, it converts the expression to postfix notation,
and then it evaluates the postfix expression.

In each step, the stack is the main tool that is used to accomplish the given task. We
illustrate these applications of stack in reverse order. That is, first we show how
stacks are used to evaluate postfix expressions and then we show how stacks are
used to transform infix expressions into postfix expressions.

2.6 EVALUATION OF A POSTFIX EXPRESSION

Suppose P is an arithmetic expression written in postfix notation. The following
algorithm, which uses a STACK to hold operands, evaluates P.

Algorithm:

This algorithm finds the VALUE of an arithmetic expression P written in postfix
notation.
1. Add a right parenthesis “)” at the end of P. [This acts as a sentinel]
2. ScanPfromlefttorightandrepeatsteps3and4foreachelementofP until

the sentinel“)” is encountered.
3. If an operand is encountered, put it on STACK.
4. If an operator is encountered, then

a. Remove the two top elements of STACK, where A
is the top element and B is the next to top
element.

b. Evaluate B operator A
Place the result of step

Data Structures and Algorithm 2022

31

(b) back on STACK [End
of If structure]
[End of Step 2loop]

5. Set VALUE equal to the top
element on STACK. 6.Exit

Let us see how the above algorithm will be
implemented using an example. Postfix String :
123*+4-
Initially the Stack is empty. Now, the first three characters scanned are 1,2 and 3,
which are

operands. Thus they will be pushed into the stack in that order.

Next character scanned is "*", which is an operator. Thus, we pop the top
two elements from the stack and perform the"*"operation with the two
operands. The second operand will be the first element that is popped.

The value of the expression(2*3) that has been evaluated(6) is pushed into the stack.

Next character scanned is "+", which is an operator. Thus, we pop the
top two elements from the stack and perform the "+" operation with the
two operands. The second operand will be the first element that is
popped.

Data Structures and Algorithm 2022

32

The value of the expression (1+6) that has been evaluated(7) is pushed into the
stack.

Next character scanned is "4", which is added to the stack.

Next character scanned is "-", which is an operator. Thus, we pop the top two elements
from the stack and perform the "-" operation with the two operands. The second

operand will be the first element that is popped.

The value of the expression (7-4) that has been evaluated(3) is pushed into the stack.

Now, since all the characters are scanned, the remaining element in the
stack (there will be only one element in the stack) will be returned.
End result : Postfix String : 123*+4-

Result : 3

Data Structures and Algorithm 2022

33

2. 7 TRANSFORMING INFIX EXPRESSIONS INTO POSTFIX EXPRESSIONS

Let Q be an arithmetic expression written in infix notation. Besides
operands and operators, Q may also contain left and right parentheses.
We assume that the operators in Q consist only of exponentiations,
multiplications, divisions, additions and subtractions and that they have
the usual three levels of precedence as given above. We also assume that
operators on the same level, including exponentiations, are performed
from left to right unless otherwise indicated by parentheses.
The following algorithm transforms the infix expression Q into its
equivalent postfix expression P. The algorithm uses a stack to
temporarily hold operators and left parentheses. The postfix expression
P will be constructed from left to right using the operands from Q and the
operators which are removed from STACK. We begin by pushing a left
parenthesis onto STACK and adding a right parenthesis at the end of Q.
The algorithm is completed when STACK is empty.

Algorithm : POLISH(Q,P)

Suppose Q is an arithmetic expression written in infix notation. This
algorithm finds the equivalent postfix expression P.

1. Push “(“ onto STACK and add “)” to the end of Q.
2. Scan Q from left to right and repeat

steps 3 to 6 for each element of Q
until the STACK is empty.

3. If an operand is encountered, add it to P.
4. If a left parenthesis is encountered, push it onto STACK.
5. If an operator is encountered, then

a. Repeatedly pop from STACK and add to P each operator which has

the same precedence as or higher precedence than the operator.
b. Add

operat
or to
STACK.
[End of
if
structu
re]

6. If a right parenthesis is encountered, then
a. Repeatedly pop from STACK and add to P each

operator until a left parenthesis is encountered.
b. Remove

the left
parenthesi
s. [End of if
structure]

[End of step 2 loop]
7.Exit

Data Structures and Algorithm 2022

34

2.8 RECURSION:

Recursion is an important concept in computer science. Suppose P is a procedure containing

either a call statement to itself or a call statement to a second procedure that may eventually

result in a call statement back to the original procedure P. then P is called recursive

procedure. A recursive procedure must have the following two properties:

• Base Case: It is nothing more than the simplest instance of a problem, consisting of a condition

that terminates the recursive function. This base case evaluates the result when a given

condition is met.

• Recursive Step: It computes the result by making recursive calls to the same function, but with

the inputs decreased in size or complexity.

For example, consider this problem statement: Print sum of n natural numbers using recursion.

This statement clarifies that we need to formulate a function that will calculate the summation of

all natural numbers in the range 1 to n. Hence, mathematically you can represent the function as:

F(n) = 1 + 2 + 3 + 4 + …………..+ (n-2) + (n-1) + n

Data Structures and Algorithm 2022

35

It can further be simplified as:

You can breakdown this function into two parts as follows:

Data Structures and Algorithm 2022

36

2.9 QUEUE DEFINITION Like a stack, a queue is an ordered collection of homogeneous
data elements; in contrast with the stack, here, insertion and deletion operations take
place at two extreme ends. A queue is also a linear data structure like an array, a stack
and a linked list where the ordering of elements is in a-linear fashion.

 The only difference between a stack and a queue is that in the case of stack insertion and
deletion (PUSH and POP) operations are at one end (TOP) only, but in a queue insertion
(called ENQUEUE) and deletion (called DEQUEUE) operations take place at two ends
called the REAR and FRONT of the queue, respectively. Figure represents a model of a
queue structure. Queue is also termed first-in first-out (FIFO)

2.10 REPRESENTATION OF QUEUES :There are two ways to represent a queue in
memory: Using an array & Using a linked list The first kind of representation uses a one-
dimensional array and it is a better choice where a queue of fixed size is required. The
other representation uses a double linked list and provides a queue whose size can vary
during processing.

Representation of a Queue using an Array A one-dimensional array, say Q[l ... N], can be
used to represent a queue. Figure shows an instance of such a queue. With this
representation, two pointers, namely FRONT and REAR, are used to indicate the two ends
of the queue. For the insertion of the next element, the pointer REAR will be the
consultant and for deletion the pointer FRONT will be the consultant.

FRONT:=FRONT+1

Similarly, whenever an element is added to the queue, the value of REAR
is increased by 1; this can be implemented by the assignment
REAR:=REAR+1

 Array representation of a queue

Data Structures and Algorithm 2022

37

2.11 OPERATION ON QUEUE

Procedure: QINSERT (QUEUE,N, FRONT, REAR, ITEM)

This procedure inserts an element ITEM into a queue.

1. If FRONT=1 and REAR=N, or if FRONT=REAR+1, then Write OVERFLOW and
return.

2. If
FRONT:=NU
LL then Set
FRONT:=1
and
REAR:=1
Else if
REAR=N
then
Set REAR :=1

Else

Set REAR :=REAR+1

3. Set QUEUE[REAR]:=ITEM

4. Return

PROCEDURE: QDELETE(QUEUE, N, FRONT, REAR, ITEM)

This procedure deletes and element from a queue and assigns it to the variable ITEM.

1. If FRONT:=NULL then write UNDERFLOW and return

2. Set ITEM:=QUEUE[FRONT]

3. If FRONT=REAR then

Set FRONT:=NULL and REAR:=NULL

Else if
FRON
T=N
then
Set
FRON
T:=1
Else

Set FRONT:=FRONT+1

4. Return

Data Structures and Algorithm 2022

38

B DDD

BBB AAA

Linked Representation of Queue:

Queue Q:

FRONT REAR

Insert ‘EEE’ into queue Q:

FRONT REAR REAR

Delete from queue Q:

FRONT FRONT REAR

LINK Q-INSERT (INFO, LINK, FRONT, REAR, AVAIL, ITEM)

1. [Available space?] IF AVAIL= NULL, then write OVERFLOW and EXIT.

2. [Remove first node from AVAIL first]

Set NEW= AVAIL and AVAIL= LINK [AVAIL]

3. Set INFO[NEW]= ITEM and LINK

[NEW]= NULL (Copies ITEM into

new node)

4. IF(FROM= NULL) then

FRONT=REAR=NEW (If Q is empty then

ITEM is the first element in Q)

Else set LINK [REAR] =NEW and REAR=NEW

(REAR points to the new node appended to the end of the list)

5. EXIT.

LINK Q-DELETE (INFO, LINK, FRONT, REAR, AVAIL, ITEM)

This Procedure deletes the front element of the linked queue and stores it in item.

1. [Linked queue empty?]

If (FRONT = NULL) then the Write: UNDERFLOW and EXIT.

2. Set TEMP = FRONT(If linked queue is nonempty, remember

FRONT in a temporary variable TEMP)

3. ITEM =INFO(TEMP)

4. FRONT = LINK(TEMP)(Reset front to point to the next element in queue)

5. LINK(TEMP) = AVAIL and AVAIL = TEMP(return deleted node

TEMP to AVAIL list)

6. EXIT.

AAA EEE DDD CCC BBB

X

X

AAA BBB CCC DDD EEE

Data Structures and Algorithm 2022

39

2.12 DEQUES

A deque is a linear list in which elements can be added or removed at either end but not
in the middle. The term deque is a contraction of the name double ended queue. There
are various ways of representing a deque in a computer.

Unless, it is otherwise stated or implied, we will assume our deque is maintained by a
circular array DEQUE with pointers LEFT and RIGHT, which point to the two ends of the
deque. We assume that the elements extend from the left end to the right end in the
array. The term “circular” comes from the fact that we assume that DEQUE[1] comes
after DEQUE[N] in the array. The condition LEFT=NULL will be used to indicate that a
deque is empty.

There are two variations of a deque- namely an input restricted deque and an output
restricted deque—which are intermediate between a deque and a queue.

Specifically, an input restricted deque is a deque which allows insertions at only one
end of the list but allows deletions at both ends of the list; and an output restricted
deque is a deque which allows deletions at only one end of the list but allows insertions
at both ends of the list.

Data Structures and Algorithm 2022

40

Unit: III
Linked List – Representation of Linked Lists in Memory – Traversing a Linked List –

Insertion into a Linked List – Deletion from a Linked List – Two-way Linked Lists –

Operations on Two-way Lists.

3.1 A linked list

A linked list or one way list is a linear collection of data elements, called nodes, where the

linear order is given by means of pointers. That is, each node is divided into two parts: the

first part contains the information of the element, and the second part, called the link field

or next pointer field, contains the address of the next node in the list.

The null pointer, denoted by X in the diagram, signals the end of the list. The linked list

also contains a list pointer variable—called START or NAME which contains the address

of the first node in the list; hence there is an arrow drawn from START to the first node.

Clearly, we need only this address in START to trace through the list. A special case is the

list that has no nodes. Such a list is called the null list or empty list and is denoted by the

null pointer in the variable START.

Example:

A hospital ward contains 12 beds, of which 9 are occupied.

Suppose we want an alphabetical listing of the patients. This

listing may be given by the pointer field, called Next. we use

the variable START to point to the first patient. Hence START

contains 5, since the first patient. Adams, occupies bed 5. Also,

Adams’s pointer is equal to 3, since Dean, the next patient,

occupies bed 3; Dean’s pointer is 11, since Fields, the next

patient, occupies bed 11; and so on. The entry for the last

patient (Samuels) contains the

nullpointer,denotedby0.(Some8arrows have been drawn to

indicate the listing of the first few patients}

Data Structures and Algorithm 2022

41

3.2 Representation of Linked Lists in Memory
Let LIST be a linked list. Then LIST will be maintained in memory, unless otherwise

specified or implied, as follows. First of all, LIST requires two linear arrays-we will call

them here INFO and LINK – such that INFO[K] and LINK[K] contain, respectively, the

information part and the next pointer filed of anode of LIST. As noted above, LIST also

requires a variable name — such as START --- which contains the location of the

beginning of the list, and a next pointer sentinel—denoted by NULL—which indicates

the end of the list. Since the subscripts of the arrays INFO and LINK will usually be

positive, we will choose NULL=0, unless otherwise stated.

Data Structures and Algorithm 2022

42

Data Structures and Algorithm 2022

43

Data Structures and Algorithm 2022

44

3.4 Insertion into a linked list

Insertion algorithms

Algorithms which insert nodes into linked lists come up in various situations.

• The first one inserts a node at the beginning of the list,

• Second one inserts a node after the node with a given location,

• Third one inserts anode into a sorted list.

All algorithms assume that the linked list is in memory in the form

LIST(INFO,LINK,START,AVAIL) and that the variable ITEM contains

the new information to be added to the list.

Since our insertion algorithms will use a node in the AVAIL list, all of the

algorithms will include the following steps:

(a) Checking to see if space is available in the AVAIL list. If not, that

is, if AVAIL=NULL, then the algorithm will print the message

OVERFLOW.

(b) Removing the first node from the AVAIL list. Using the variable

NEW to keep track of the location of the new node, this step can be

implemented by the pair of assignments.

NEW:=AVAIL, AVAIL:=LINK[AVAIL]

(c) Copying new information into the new

node. In other words, INFO[NEW]:=ITEM

Data Structures and Algorithm 2022

45

Inserting at the beginning of a list

Suppose our linked list is not necessarily sorted and there is no reason to

insert a new node in any special place in the list. Then the easiest place to

insert the node is at the beginning of the list. An algorithm that does so

follows.

Algorithm: INSFIRST(INFO,LINK,START,AVAIL,ITEM)

This algorithm inserts ITEM as the first node in the list.

1. If AVAIL=NULL, then write OVERFLOW, and exit.

2. Set NEW:=AVAIL and AVAIL:=LINK[AVAIL]

3. Set INFO[NEW]:=ITEM(copies new data into new node)

4. Set LINK[NEW]:=START(New node now points to original first node)

5. Set START:=NEW (changes START so it points to the new node)

6. Exit

Inserting after a given node

We are given a pointer to a node, and the new node is inserted after

the given node. Follow the steps to add a node after a given node:

• Firstly, check if the given previous node is NULL or not.

• Then, allocate a new node and

• Assign the data to the new node

• And then make the next of new node as the next of previous node.

• Finally, move the next of the previous node as a new node.

Data Structures and Algorithm 2022

46

Algorithm: INSLOC(INFO,LINK,START,AVAIL,LOC,ITEM)

This algorithm inserts ITEM so that ITEM follows the node with

location LOC or inserts ITEM as the first node when LOC=NULL.

1. If AVAIL=NULL, then write OVERFLOW and exit

2. Set NEW:=AVAIL and AVAIL:=LINK[AVAIL]

3. Set INFO[NEW]:=ITEM

4. If LOC=NULL, then

Set LINK [NEW]:=START and START:=NEW

Else

Set LINK[NEW]:=LINK[LOC] and LINK[LOC]:=NEW

5. Exit

Inserting into a sorted linked list

Given a sorted list in increasing order and a single node, insert the node into the list’s correct
sorted position. The function should take an existing node and rearranges pointers to insert

it into the list.

Suppose ITEM is to be inserted into assorted linked LIST. Then ITEM must be inserted

between nodes A and B so that INFO(A) < ITEM ≤ INFO(B)

The following is a procedure which finds the location LOC of node A, that is, which finds

the location LOC of the last node in LIST whose value is less than ITEM.

Data Structures and Algorithm 2022

47

Algorithm : INSERT(INFO,LINK.START,AVAIL,ITEM)

This algorithm inserts ITEM into a sorted linked list.

1. Call FINDA(INFO,LINK,START,ITEM,LOC)

2. Call INSLOC(INFO,LINK,START,AVAIL,LOC,ITEM)

3. Exit

Linked List after insertion of 9

3.5 Deletion from a linked list

You can delete either from the beginning, end or from a particular position.

1. Delete from beginning

• Point head to the second node, ie START will point to second node.

2. Delete from end

• Traverse to second last element

• Change its next pointer to NULL.

3. Delete from middle

• Traverse to element before the element to be deleted

• Change next pointers to exclude the node from the chain

Data Structures and Algorithm 2022

48

Deleting the node following a given node

In order to delete the node, which is present after the specified node, we need to skip the

desired number of nodes to reach the node after which the node will be deleted. We need

to keep track of the two nodes. The one which is to be deleted the other one if the node

which is present before that node.

Algorithm: DEL(INFO,LINK,START,AVAIL,LOC,LOCP)

ThisalgorithmdeletesthenodeNwithlocationLOC.LOCPisthelocationofthe

nodewhich precedes N or, when N is the first node,LOCP=NULL.

1. If LOCP=NULL,thenSet START:=LINK[START]

Else

Set LINK[LOCP]:=LINK[LOC].

2. Set LINK[LOC]:=AVAIL andAVAIL:=LOC

3. Exit.

Deleting the node with a given ITEM of information

Let LIST be a linked list in memory. Suppose we are given an ITEM of information and we

want to delete from the LIST, the first node N which contains ITEM. Recall that before we

can delete N from the list, we need to know the location of the node preceding N. Accordingly,

first we give a procedure which finds the location LOC of the node N containing ITEM and

the location LOCP of the node preceding node N. If N is the first node, we set LOCP=NULL,

and if ITEM does not appear in LIST, we setLOC=NULL.

Procedure: FINDB(INFO,START,ITEM,LOC,LOCP)

This procedure finds the location LOC of the first node N which contains

ITEM and the

locationLOCPofthenodeprecedingN.IfITEMdoesnotappearinthelist,thent

Data Structures and Algorithm 2022

49

heprocedure sets LOC=NULL, and if ITEM appears in the first node, then

it setsLOCP=NULL.

1. If START =NULLthen

Set LOC:=NULL and LOCP:=NULL and return.

2. If INFO[START]=ITEM,then

Set LOC:=START and LOCP=NULL and return.

3. Set SAVE:=START andPTR:=LINK[START]

4. Repeat Steps 5 and 6 while PTR≠NULL

5. If INFO[PTR]=ITEM then

 Set LOC:=PTR and LOCP:=SAVE and return.

6. Set SAVE:=PTR andPTR:=LINK[PTR]

7. SetLOC:=NULL

8. Return

Now we can easily present an algorithm to delete the first node N from a

linked list which contains a given ITEM of information.

Algorithm: DELETE(INFO,LINK,START,AVAIL,ITEM)

This algorithm deletes from a linked list the first node N which contains

the given ITEM of information.

1. Call FINDB(INFO,LINK,START,ITEM,LOC,LOCP)

2. If LOC=NULL, then Write ITEM not in list, and exit.

3. If LOCP=NULL then

Set START:=LINK[START]

Else

Set LINK[LOCP]:=LINK[LOC].

4. Set LINK[LOC]:=AVAIL and AVAIL:=LOC

5. Exit

3.6 Two way lists
A two way list is a linear collection of data elements, called nodes, where

each node N is divided into three parts:

• An information field INFO which contains the data of N.

• A pointer field FORW which contains the location of the next node in the list.

• A pointer field BACK which contains the location of the preceding node in the

list.

Data Structures and Algorithm 2022

50

The list also requires two list pointer variables: FIRST, which points to the first node in the list,

and LAST, which points to the last node in the list.

Observe that the null pointer appears in the FORW field of the last node in the list and also in the

BACK field of the first node in the list.

Observe that, using the variable FIRST and the pointer field FORW, we can traverse a two way

list in the forward direction as before. On the other hand, using the variable LAST and the pointer

field BACK, we can also traverse the list in the backward direction.

Suppose LOCA and LOCB are the locations, respectively, of nodes A and B in a two way list.

Then the way that the pointers FORW and BACK are defined gives us the following:

Pointer property: FORW[LOCA]=LOCB if and only if BACK[LOCB]=LOCA

Two way lists may be maintained in memory by means of linear arrays in the same way as one

way lists except that now we require two pointer arrays, FORW and BACK, instead of one pointer

array LINK, and we require two list pointer variables, FIRST and LAST, instead of one list

pointer variable START.

Data Structures and Algorithm 2022

51

Two way Header Lists

The advantages of a two way list and a circular header list may be combined into a two way

circular header list. The list is circular because the two end nodes point back to the header node.

Observe that such a two way list requires only one list pointer variable START, which points to

the header node. This is because the two pointers in the header node point to the two ends of the

list.

3.7 Operations on Two way lists

• Traversing: Visiting each node of the list at least once in order to perform some

specific operation like searching, sorting, display, etc.

• Searching: Comparing each node data with the item to be searched and return the

location of the item in the list if the item found else return null.

• Inserting :For each insertion operation, we need to consider the three cases. These three

cases also need to be considered when removing data from the doubly linked list.

1. Insertion at the beginning

2. Insertion after nth Node

3. Insertion at last

1.Insertion at the Beginning

In the doubly linked list, we would use the following steps to insert a new node at the beginning

of the doubly linked list.

➢ Create a new node

➢ Assign its data value

➢ Assign newly created node’s next ptr to current head reference. So, it points to the

previous start node of the linked list address

➢ Change the head reference to the new node’s address.

➢ Change the next node’s previous pointer to new node’s address (head reference)

Data Structures and Algorithm 2022

52

• Deleting : We are given the location LOC of a node N in LISR , and we want to
delete N from the list. BACK [LOCK] and FORW [LOC] are the locations.
FORW[BACK[LOC]]=FORW[LOC] and BACK[FORW[LOC]]=BACK[LOC].

Algorithm

DELTWL (INFO, FORW, BACK, START, AVAIL, LOC)

1. [Delete node.]

Set FORW[BACK[LOC]]=FORW[LOC] and BACK[FORW[LOC]]=BACK[LOC].

2.[Return node to AVAIL list]

Set FORW[LOC]=AVAIL and AVAIL=LOC

3. Exit

Data Structures and Algorithm 2022

53

Unit: IV

Trees - Binary Trees – Representing Binary Trees in Memory – Traversing

Binary Tree – Threads –Binary Search Tree – Graph Theory – Terminology

– Sequential Representation of Graph: Adjacency Matrix, Path Matrix –

Traversing a Graph, Breadth First Search, Depth First Search.

TREES AND BINARY TREES

INTRODUCTION

In linear data structure data is organized in sequential order and in non-linear data structure data is

organized in random order. A tree is a very popular non-linear data structure used in a wide range of

applications. Tree is a non-linear data structure which organizes data in hierarchical structure and this

is a recursive definition.

DEFINITION OF TREE:

Tree is collection of nodes (or) vertices and their edges (or) links. In tree data structure, every

individual element is called as Node. Node in a tree data structure stores the actual data of that

particular element and link to next element in hierarchical structure.

Note: 1. In a Tree, if we have N number of nodes then we can have a maximum
 of N-1 number of links or edges.

2. Tree has no cycles.

Data Structures and Algorithm 2022

54

4.1 BINARY TREE:

In a normal tree, every node can have any number of children. A binary tree is a special type of

tree data structure in which every node can have a maximum of 2 children. One is known as a

left child and the other is known as right child.

A tree in which every node can have a maximum of two children is called Binary

Tree. In a binary tree, every node can have either 0 children or 1 child or 2

children but not more than 2 children.

Example:

TREE TERMINOLOGIES:

1. Root Node: In a Tree data structure, the first node is called as Root Node. Every tree
must have a root node. We can say that the root node is the origin of the tree data structure.
In any tree, there must be only one root node. We never have multiple root nodes in a tree.

Data Structures and Algorithm 2022

55

2. Edge: In a Tree, the connecting link between any two nodes is called
as EDGE. In a tree with 'N' number of nodes there will be a maximum
of 'N-1' number of edges.

3. Parent Node: In a Tree, the node which is a predecessor of any node is called as

PARENT NODE. In simple words, the node which has a branch from it to any other

node is called a parent node. Parent node can also be defined as "The node which

has child / children

Here, A is parent of B&C. B is the parent of D,E&F and so on…

4. Child Node: In a Tree data structure, the no de which is descendant of any node
is called as CHILD Node. In simple words, the node which has a link from its parent
node is called as child node. In a tree, any parent node can have any number of child
nodes. In a tree, all the nodes except root are child nodes.

Data Structures and Algorithm 2022

56

5. Siblings: In a Tree data structure, nodes which belong to same
Parent are called as SIBLINGS. In simple words, the nodes with the
same parent are called Sibling nodes.

6. Internal Nodes: In a Tree data structure, the node which has at least one child is called as
INTERNAL Node. In simple words, an internal node is a node with at least one child.

In a Tree data structure, nodes other than leaf nodes are called as Internal Nodes. The root node

is also said to be Internal Node if the tree has more than one node. Internal nodes are also called

as 'Non-Terminal' nodes.

Data Structures and Algorithm 2022

57

7. Degree: In a Tree data structure, the total number of children of a node is called as

DEGREE of that Node. In simple words, the Degree of a node is total number of children it
has. The highest degree of a node among all the nodes in a tree is called as 'Degree of Tree'

Degree of Tree is: 3

8.Level: In a Tree data structure, the root node is said to be at Level 0 and the children of root
node are at Level 1 and the children of the nodes which are at Level 1 will be at Level 2 and so
on... In simple words, in a tree each step from top to bottom is called as a Level andthe Level
count starts with '0' and incremented by one at each level (Step).

9.Height: In a Tree data structure, the total number of edges from leaf node to a particular node
in the longest path is called as HEIGHT of that Node. In a tree, height of the root node is said to

be height of the tree. In a tree, height of all leaf nodes is '0'.

Data Structures and Algorithm 2022

58

11.Path: In a Tree data structure, the sequence of Nodes and Edges from one node to another
node is called as PATH between that two Nodes. Length of a Path is total number of nodes
in that path. In below example the path A - B - E - J has length 4.

12.Sub Tree: In a Tree data structure, each child from a node forms a subtree recursively.
Every child node will form a subtree on its parent node.

Data Structures and Algorithm 2022

59

TYPES OF BINARY TREE:

1. Complete Binary Tree:

In a binary tree, every node can have a maximum of two children. But in strictly binary tree,

every node should have exactly two children or none and in complete binary tree all the nodes

must have exactly two children and at every level of complete binary tree there must be 2level

number of nodes. For example at level 2 there must be 22 = 4 nodes and at level 3 there must

be 23 = 8 nodes

A binary tree in which every internal node has exactly two children and all leaf nodes are

at same level is called Complete Binary Tree.

Complete binary tree is also called as Perfect Binary Tree.

2.Extended Binary Tree:

A binary tree can be converted into Full Binary tree by adding dummy

nodes to existing nodes wherever required.

The full binary tree obtained by adding dummy nodes to a binary tree is called as

Extended Binary Tree.

In above figure, a normal binary tree is converted into full binary tree by adding dummy

nodes.

Data Structures and Algorithm 2022

60

4.2 BINARY TREE REPRESENTATIONS:

A binary tree data structure is represented using two
methods. Those methods are asfollows...

1. Array Representation
2. Linked List Representation

 Consider the following binary tree.

1. Array Representation of Binary Tree

In array representation of a binary tree, we use one-dimensional array (1-D Array) to

represent a binary tree.

Consider the above example of a binary tree and it is represented as follows...

To represent a binary tree of depth 'n' using array representation, we need one

dimensional array with a maximum size of 2n + 1.
2.Linked List Representation of Binary Tree
We use a double linked list to represent a binary tree. In a double linked list, every node consists

of three fields.

o First field for storing left child address.

o second for storing actual data and third for the right child address.

o In this linked list representation, a node has the following structure

Data Structures and Algorithm 2022

61

The above example of the binary tree represented using Linked list representation is shown as

follows

4.3 BINARY TREE TRAVERSALS:

Unlike linear data structures (Array, Linked List, Queues, Stacks, etc) which have only one logical

way to traverse them, binary trees can be traversed in different ways. Following are the generally

used ways for traversing binary trees.

When we wanted to display a binary tree, we need to follow some order in which all the nodes of

that binary tree must be displayed. In any binary tree, displaying order of nodes depends on the

traversal method.

Displaying (or) visiting order of nodes in a binary tree is called as Binary Tree Traversal.

There are three types of binary tree traversals.

1. In - Order Traversal
2. Pre - Order Traversal
3. Post - Order Traversal

1. In - Order Traversal (left Child - root - right Child):

In In-Order traversal, the root node is visited between the left child and right child. In this

traversal, the left child node is visited first, then the root node is visited and later we go for

visiting the right child node. This in-order traversal is applicable for every root node of all sub

trees in the tree. This is performed recursively for all nodes in the tree.

Step-1: Visit the left

subtree, using inorder.

Step-2: Visit the root.

Step-3: Visit the right subtree, using inorder.

Data Structures and Algorithm 2022

62

In the above example of a binary tree, first we try to visit left child of root node 'A', but A's

left child 'B' is a root node for left subtree. so we try to visit its (B's) left child 'D' and again

D is a root for subtree with nodes D, I and J. So we try to visit its left child 'I' and it is the

leftmost child. So first we visit 'I' then go for its root node 'D' and later we visit D's right

child 'J'. With this we have completed the left part of node B. Then visit 'B' and next B's

right child 'F' is visited. With this we have completed left part of node A. Then visit root

node 'A'. With this we have completed left and root parts of node A. Then we go for the

right part of the node

A. In right of A again there is a subtree with root C. So go for left child of C and again it is

a subtree with root G. But G does not have left part so we visit 'G' and then visit G's right

child K. With this we have completed the left part of node C. Then visit root node 'C' and

next visit C's right child 'H' which is the rightmost child in the tree. So we stop the process.

That means here we have visited in the order of I - D - J - B - F - A - G - K - C - H

 using In- Order Traversal.

2.Pre - Order Traversal (root - leftChild - rightChild):

In Pre-Order traversal, the root node is visited before the left child and right child nodes. In

this traversal, the root node is visited first, then its left child and later its right child. This

pre-order traversal is applicable for every root node of all subtrees in the tree. Preorder search

is also called backtracking

.

Algorithm:
Step-1: Visit the root.

 Step-2: Visit the left subtree, using preorder.

 Step-3: Visit the right subtree, using preorder

Data Structures and Algorithm 2022

63

In the above example of binary tree, first we visit root node 'A' then visit its left

child 'B' which is a root for D and F. So we visit B's left child 'D' and again D is a root

for I and J. So we visit D's left child 'I' which is the leftmost child. So next we go for

visiting D's right child 'J'. With this we have completed root, left and right parts of node

D and root, left parts of node B. Next visit B's right child 'F'. With this we have completed

root and left parts of node A. So we go for A's right child 'C' which is a root node for G

and H. After visiting C, we go for its left child 'G' which is a root for node K. So next we

visit left of G, but it does not have left child so we go for G's right child 'K'. With this, we

have completed node C's root and left parts. Next visit C's right child 'H' which is the

rightmost child in the tree. So we stop the process.

 That means here we have visited in the order of A-B-D-I-J-F-C-G-K-H

 using Pre- Order Traversal.

3.Post - Order Traversal (left Child – right Child - root):

In Post-Order traversal, the root node is visited after left child and right child. In this

traversal, left child node is visited first, then its right child and then its root node. This

is recursively performed until the right most nodes are visited. Algorithm:

Step-1: Visit the left subtree, using post order.

Step-2: Visit the right subtree, using post order

 Step-3: Visit the root.

Here we have visited in the order of I - J - D - F - B - K - G - H - C - A

using Post-OrderTraversal

Data Structures and Algorithm 2022

64

4.4 HEADER NODES:THREADS

• In a binary search tree, there are many nodes that have an empty left child or empty right
child or both.

• You can utilize these fields in such a way so that the empty left child of a node points to
its in order predecessor and empty right child of the node points to its inorder successor.

• One way threading:- A thread will appear in a right field of a node and will point to the
next node in the inorder traversal.

• Two way threading:- A thread will also appear in the leftfield of a node and will point
to the preceding node in the inorder traversal.

Defining Threaded Binary Trees

o Consider the following binary search tree.

o Most of the nodes in this tree hold a NULL value in their left or right child

fields.

o In this case, it would be good if these NULL fields are utilized for some

other useful purpose.

Data Structures and Algorithm 2022

65

One Way Threaded Binary Trees

o The empty left child field of a node can be used to point to its

 in order predecessor.

o Similarly, the empty right child field of a node can be used to point to its in-

order Such a type of binary tree is known as a one way threaded binary tree.

o A field that holds the address of its in-order successor is known as

thread. In-order :- 30 40 50 60 65 69 72 80

Two way Threaded Binary Trees

o Such a type of binary tree is known as a threaded binary tree.

o A field that holds the address of its inorder successor or predecessor is known as thread.

The empty left child field of a node can be used to point to its inorder predecessor.

o Similarly, the empty right child field of a node can be used to point to its inorder successor.

 Inorder :- 30 40 50 60 65 69 72 80

Data Structures and Algorithm 2022

66

Node 30 does not have an inorder predecessor because itis the first node to be traversed

in inorder sequence

Similarly, node 80 does not have an inorder successor.

Two way Threaded Binary Trees with header Node

The right child of the header node always points to itself.

Therefore, you take a dummy node called the header node.

The threaded binary tree is represented as the left child of the header node.

Data Structures and Algorithm 2022

67

4.5 BINARY SEARCH TREES

A binary search tree (BST) is a tree in which all nodes follows the below mentioned

properties:

o The left sub-tree of a node has key less than or equal to its parent node's key.

o The right sub-tree of a node has key greater than or equal to its parent node's key.

Thus, a binary search tree (BST) divides all its sub-trees into two

segments; left sub- tree and right sub-tree and can be defined as−

BST is a collection of nodes arranged in a way where they maintain BST properties. Each

node has key and associated value. While searching, the desired key is compared to the

keys in BST and if found, the associated value is retrieved. An example of BST −

We observe that the root node key (27) has all less-valued keys on the left sub-tree and

higher valued keys on the right sub-tree.

4.6 GRAPH

A graph is defined as Graph is a collection of vertices and arcs which connects vertices in the graph. A

graph G isrepresented as G = (V , E), where V is set of vertices and E is set of edges.

Example: graph G can be defined as G = (V , E) Where V = {A,B,C,D,E} and

E = {(A,B),(A,C)(A,D),(B,D),(C,D),(B,E),(E,D)}. This is a graph with 5 vertices and 6 edges.

left_subtree (keys) ≤ node (key) ≤ right_subtree (keys)

Data Structures and Algorithm 2022

68

Graph Terminology

1. Vertex : An individual data element of a graph is called as Vertex. Vertex is also known as

node. In above example graph, A, B, C, D & E are known as vertices.

2. Edge : An edge is a connecting link between two vertices. Edge is also known as Arc. An

edge is represented as(starting Vertex, ending Vertex). In above graph, the link between

vertices A and B is represented as (A,B).

Types of Graphs

 1.Undirected Graph

 A graph with only undirected edges is said to be undirected graph.

2.Directed Graph

A graph with only directed edges is said to be directed graph.

3.Complete Graph

A graph in which any V node is adjacent to all other nodes present in the graph is

known as a complete graph. An undirected graph contains the edges that are equal to

edges = n(n-1)/2 where n is the number of vertices present in the graph. The following

figure shows a complete graph.

Data Structures and Algorithm 2022

69

4.Weighted Graph

A graph is said to be weighted if there are some non negative value

assigned to each edges of the graph. Thevalue is equal to the length between

two vertices. Weighted graph is also called a network.

Outgoing Edge

A directed edge is said to be outgoing edge on its orign vertex.

Incoming Edge

A directed edge is said to be incoming edge on its destination vertex.

Degree

Total number of edges connected to a vertex is said to be degree of that vertex.

Indegree

Total number of incoming edges connected to a vertex is said to be indegree of that

vertex.

Outdegree

Total number of outgoing edges connected to a vertex is said to be outdegree of that vertex.

Self-loop

An edge (undirected or directed) is a self-loop if its two endpoints coincide.

Adjacent nodes

When there is an edge from one node to another then these nodes are called adjacent nodes.

Incidence

In an undirected graph the edge between v1 and v2 is incident on node v1 and v2.

Data Structures and Algorithm 2022

70

Sub Graph

A graph S is said to be a sub graph of a graph G if all the vertices and all the

edges of S are in G, and each edge ofS has the same end vertices in S as in G. A

subgraph of G is a graph G’ such that V(G’) V(G) and E(G’) E(G)

Connected Graph

A graph G is said to be connected if there is at least one path between every pair of

vertices in G. Otherwise, G is disconnected.

A connected graph G A disconnected graph G

This graph is disconnected because the vertex v1 is not connected with the other vertices

of the graph.

4.7SEQUENTIAL REPRESENTATION OF GRAPHS;
ADJACENCY MARTIX; PATH MATRIX

1.Adjacency Matrix

In this representation, graph can be represented using a matrix of size total number of vertices by

total number ofvertices; means if a graph with 4 vertices can be represented using a matrix of 4X4

size.

In this matrix, rows and columns both represent vertices.

This matrix is filled with either 1 or 0. Here, 1 represents there is an edge from row vertex to

column vertex and 0represents there is no edge from row vertex to column vertex.

Data Structures and Algorithm 2022

71

Adjacency Matrix : let G = (V, E) with n vertices, n 1. The adjacency matrix of G is a 2-

dimensional n nmatrix, A, A(i, j) = 1 iff (vi, vj) E(G) (vi, vj for a diagraph), A(i, j) = 0

otherwise.

example : for undirected graph

For a Directed graph

The adjacency matrix for an undirected graph is symmetric; the adjacency matrix

for a digraph need not be symmetric.

2. Path Matrix in Graph Theory

Graph Theory is dependent on vertex (node) and edge (path) relationship. So, each and every

process needs path matrix in graph theory. To find a path between two vertex or node path matrix

is the most easiest way. If you have a path matrix defined for a graph you can say whether a node

can be traveled from another specific node.

Below is a real life Data Structure example of Path Matrix in Graph Theory.

This graph defines train routes among India, Pakistan and Turkey.

 So, We can answer the following answer from the path matrix of the graph.

Is there a train route between New Delhi and Istanbul?Ans: Yes.

 Is there a train route between Kolkata and Istanbul? Ans: Yes.

Is there a train route between Islamabad and Kolkata? Ans: Yes.

And that is how path matrix works.

Data Structures and Algorithm 2022

72

4.8 TRAVERSING A GRAPH

Graph traversal is a technique used for searching a vertex in a graph. The graph traversal

is also used to decide the order of vertices is visited in the search process. A graph traversal

finds the edges to be used in the search process without creating loops. That means using

graph traversal we visit all the vertices of the graph without getting into looping path.

There are two graph traversal techniques and they are as follows...

1. BFS (Breadth First Search)

2. DFS (Depth First Search)

1. BFS (Breadth First Search)
BFS traversal of a graph produces a spanning tree as final result. Spanning Tree is a

graph without loops. We use Queue data structure with maximum size of total number

of vertices in the graph to implement BFS traversal.

We use the following steps to implement BFS traversal...

Step 1 - Define a Queue of size total number of vertices in the graph.

Step 2 - Select any vertex as starting point for traversal. Visit that vertex and insert it

into the Queue. Step 3 - Visit all the non-visited adjacent vertices of the vertex which

is at front of the Queue and insert them into the Queue.

Step 4 - When there is no new vertex to be visited from the vertex which is at front of

the Queue then delete that vertex.

Step 5 - Repeat steps 3 and 4 until queue becomes empty.

Step 6 - When queue becomes empty, then produce final spanning tree by removing

unused edges from the graph

Example of BFS algorithm

Now, let's understand the working of BFS algorithm by using an example.

In the example given below, there is a directed graph having 7 vertices.

Data Structures and Algorithm 2022

73

nodes that are to be processed, while QUEUE2 holds all the nodes that are processed and
deleted from QUEUE1.

Now, let's start examining the graph starting from Node A.

Step 1 - First, add A to queue1 and NULL to queue2.

1. QUEUE1 = {A}

2. QUEUE2 = {NULL}

Step 2 - Now, delete node A from queue1 and add it into queue2. Insert all

neighbors of node A to queue1.

1. QUEUE1 = {B, D}

2. QUEUE2 = {A}

Step 3 - Now, delete node B from queue1 and add it into queue2. Insert all

neighbors of node B to queue1.

 1.QUEUE1 = {D, C, F}

 2. QUEUE2 = {A, B}

Step 4 - Now, delete node D from queue1 and add it into queue2. Insert all

neighbors of node D to queue1. The only neighbor of Node D is F since it is

already inserted, so it will not be inserted again.

1. QUEUE1 = {C, F}

2. QUEUE2 = {A, B, D}

Step 5 - Delete node C from queue1 and add it into queue2. Insert all neighbors of

node C to queue1.

1. QUEUE1 = {E, G}

2. QUEUE2 = {A, B, D, C, F}

Step 6 - Delete node E from queue1. Since all of its neighbors have already been

added, so we will not insert them again. Now, all the nodes are visited, and the target

node E is encountered into queue2.

1. QUEUE1 = {G}

2. QUEUE2 = {A, B, D, C, F, E}

Data Structures and Algorithm 2022

74

2.DFS algorithm

DFS algorithm in the data structure. It is a recursive algorithm to search all the

vertices of a tree data structure or a graph. The depth-first search (DFS) algorithm

starts with the initial node of graph G and goes deeper until we find the goal node

or the node with no children.

Algorithm

Step 1: SET STATUS = 1 (ready state) for each node in G

Step 2: Push the starting node A on the stack and set its STATUS = 2 (waiting state)

Step 3: Repeat Steps 4 and 5 until STACK is empty

Step 4: Pop the top node N. Process it and set its STATUS = 3 (processed state)

Step 5: Push on the stack all the neighbors of N that are in the ready state

(whose STATUS = 1) and set their STATUS = 2 (waiting state)

[END OF LOOP]

Step 6: EXIT

In the example given below, there is a directed graph having 7 vertices.

Now, let's start examining the graph starting from Node H.

Step 1 - First, push H onto the stack.

 1 STACK: H

Step 2 - POP the top element from the stack, i.e., H, and print it. Now, PUSH all

the neighbors of H onto the stack that are in ready state.
1. Print: H

2. STACK: A

Data Structures and Algorithm 2022

75

Step 3 - POP the top element from the stack, i.e., A, and print it. Now, PUSH all the
neighbors of A onto the stack that are in ready state.

1. Print: A

2. STACK: B, D

Step 4 - POP the top element from the stack, i.e., D, and print it. Now, PUSH all the

neighbors of D onto the stack that are in ready state.

1. Print: D

2. STACK: B, F

Step 5 - POP the top element from the stack, i.e., F, and print it. Now, PUSH all

the neighbors of F onto the stack that are in ready state.

1. Print: F

2. STACK: B

Step 6 - POP the top element from the stack, i.e., B, and print it. Now, PUSH all

the neighbors of B onto the stack that are in ready state.

1. Print: B

2. STACK: C

Step 7 - POP the top element from the stack, i.e., C, and print it. Now, PUSH all

the neighbors of C onto the stack that are in ready state.

1. Print: C

2. STACK: E, G

Step 8 - POP the top element from the stack, i.e., G and PUSH all the neighbors of

G onto the stack that are in ready state.

1. Print: G

2. STACK: E

Step 9 - POP the top element from the stack, i.e., E and PUSH all the neighbors of

E onto the stack that are in ready state.

1. Print: E

2. STACK:

Now, all the graph nodes have been traversed, and the stack is empty.

Data Structures and Algorithm 2022

76

Unit: V

Sorting and Searching : Sorting- Bubble sort, Insertion, Selection, Merge sort , Quick

sort, Heap sort Searching: Liner search, Binary search.

Sorting
 Sorting is the process of arranging the elements in the ascending or descending order.

The default sorting is ascending order.

 There are two types of sorting namely

1. External Sorting

2. Internal Sorting

External Sorting: It is used to handle massive amount of data for sorting. It is requied when

the data is being sorted do not fit into the main memory of a computing device(usually main

memory).

Merge sort (2 way merge sort is an example)

Internal Sorting: It is the type of sorting occur within a main memory. Internal sorting

algorithm types are as follows

1. Bubble sort

2. Insertion sort

3. Selection sort

4. Merge sort

5. Quick sort

6. Heap sort

Bubble sort: In this the adjacent or adjoining values are compared and exchanged if they

are not in the proper order. This process is repeated until the entire array is sorted.

Example: Consider the following numbers to be sort using bubble sort method

5 12 2 10 6

Pass 1

1. Compare 5 and 12 [No change]

5

12

2

10

6

Data Structures and Algorithm 2022

77

2. Compare 12 and 2 [Since 2 is smaller than 12 apply swap]

3. Compare 12 and 10 apply swap

4. Compare 12 and 6 apply swap

Pass 2

1. Compare 5 and 2 ,apply swap

2. Compare 5 and 10 ,No change

5

12

2

10

6

5

2

12

10

6

5

2

12

10

6

5

2

10

12

6

5

2

10

12

6

5

2

10

6

12

5

2

10

6

12

2

5

10

6

12

2

5

10

6

12

Data Structures and Algorithm 2022

78

3. Compare 10 and 6 apply swap

4. Compare 10 and 12, No change

 Now we can find all the elements are sorted in the ascending order using bubble sort .

Bubble Sort Algorithm

1. Start

2. Read n [No .of elements]

3. Read data[] [No of elements]

4. Repeat steps 5,6 and 7 until 1 to n-1

5. Initially in a pass assume no interchange

InterchangeFALSE

6. Repeat steps 7 8 9

7. If data[i]>data[i+1] then

a. data[i]=data[i+1]

b. interchangeTRUE

// End of step 6

8. if(interchange==FALSE) then return

//end of step 4

9. end

2

5

10

6

12

2

5

6

10

12

2

5

6

10

12

Data Structures and Algorithm 2022

79

Insertion sort

 In this each successive element is picked and inserted at an appropriate position in

the previously sorted array.

 Example: Consider the following numbers to be sort using insertion sort method

40 70 10 20 60 90

Process Sorted Array Unsorted Array

Pass1 ----------- 40 70 10 20 60 90

Pass2 40[Trivially sorted] 70 10 20 60 90

Pass3 40 70 10 20 60 90

Pass4 10 40 70 20 60 90

Pass5 10 20 40 70 60 90

Pass6 10 20 40 60 70 90

Pass7 10 20 40 60 70 90 -------

 Sorted Array contains ascending order as follows

10 20 40 60 70 90

Insertion Sort Algorithm

1. Start

2. A[0]=minimum integer value /* Now start sorting the array*/

3. Repeat steps 4 through 9 for k=1,2,3….N-1

{

4. Temp=A[k]

5. ptr=k-1

6. Repeat steps 7 to 8 while temp<A[ptr]

{

7. A[ptr+1]=A[ptr] //Moves element forward

8. ptr=ptr-1

}

9. A[ptr+1]=temp

}

10. End

Data Structures and Algorithm 2022

80

INSERTION SORT:

A[]

Pass-1

K=2, temp=70,ptr=1

 70<40→false

Then A[2]=70

Pass-2

K=3, temp=10,ptr=2

 10<70→true

Then swap→A[3]=70,ptr=1

 10<40→true

swap→A[2]=40,ptr=0

 10<-∞→false

Then A[1]=10

10 40 70 20 60 90

Pass-3

K=4, temp=20,ptr=3

 20<70→true

Then swap→A[4]=70,ptr=2

 20<40→true

Again swap→A[3]=40,ptr=1

 20<10→false

 Then A[2]=20

10 20 40 70 60 90

-∞ 40 70 10 20 60 90

0 1 2 3 4 5 6

Data Structures and Algorithm 2022

81

Pass-4

K=5, temp=60,ptr=4

 60<70→true

Then swap→A[5]=70,ptr=3

 60<40→false

Then A[4]=60

Pass-5

K=6, temp=90,ptr=5

 90<70→false

Then A[6]=90

Final sorted values are

10 20 40 60 70 90

Selection Sort

 In this the smallest or largest key from the remaining unsorted array us searched

for and put in the sorted array.

Example: Consider the following numbers to be sort using insertion sort method

40 70 10 20 60 90

Process Sorted Array Unsorted Array

Pass1 ----------- 40 70 10 20 60 90

Pass2 10 40 70 20 60 90

Pass3 10 20 40 70 60 90

Pass4 10 20 40 70 60 90

Pass5 10 20 40 60 70 90

Pass6 10 20 40 60 90 90

Pass7 10 20 40 60 90

 In the above table in the unsorted array smallest element is picked and placed in the sorted

array one by one for ascending order. For descending order largest element should be picked.

Data Structures and Algorithm 2022

82

Selection Sort Algorithm

1.Repeat steps 2&3 for K=1,2,3,……N-1

2.Call MIN(A,K,N,LOC)

3.Temp=A[k],A[K]=A[LOC],A[LOC]=Temp

[End of loop]

4.Exit

MIN(A,K,NLOC)

1.MIN:=A[K],LOC=K

2.Repeat for J=k+1,k+2,……N

If MIN>A[J] then MIN=A[J] and LOC=J

[end loop]

3.Return

40 70 10 20 60 90

 1 2 3 4 5 6

Pass-1

K=1,

MIN=40 LOC=1 J=2

40>70 false

J=3

40>10→ True

MIN=10 and LOC=3

J=4→10>20→false

J=5→10>60→false

J=6→10>90→false

10 40 70 20 60 90

Data Structures and Algorithm 2022

83

Pass-2

K=2 MIN=40,LOC=2

J=3→40>70→false

MIN=40 LOC=3

J=4→40>20→True

MIN=20 LOC=4

J=5→20>60→false

J=6→20>90→false

10 20 40 70 60 90

Pass-3

K=3 MIN=40,LOC=3

J=4→40>70→false

J=5→40>60→false

J=6→40>90→false

0 20 40 70 60 90

Pass-4

K=4 MIN=70,LOC=4

J=5→70>60→true

 MIN=60,LOC=5

J=6→60>90→false

10 20 40 60 70 90

Pass-5

K=5 MIN=70 ,LOC=5

J=6→70>90→false

10 20 40 60 70 90

Data Structures and Algorithm 2022

84

Quick Sort:- It is also called as partition exchange sort. In this we should place pivot

element in the correct position [middle] and partition the remaining into two sets.

One set contains the number less than pivot element and other with greater.

Example: Consider the following list of numbers

 35 26 10 13 45 92 30 60

Here 35 is the pivot element, so it should be placed at center

 LEFT PARTITION PIVOT VALUE RIGHT PARTITION

In the above diagram the following points should be observed

• Left partition contains the numbers less than pivot element. The

partition may not be sorted.

• Right partition contains the numbers greater than pivot element. The

partition may not be sorted.

• In the left partition the bigger number is removed and placed before

the pivot element.

• In the right partition the bigger number is removed and placed at the

last

• In each steps both numbers from left and right partition is taken and

placed.

• Finally we will get the sorted elements.

35 26 10 13 30 45 92 60

26 10 13 30 35 92 45 60

 10 13 26 30 35 60 92 45

10 13 26 30 35 45 60 92

10 13 26 30

0

35 45 60 92

Data Structures and Algorithm 2022

85

Quick Sort Algorithm:- [QuickSort(data[],start,end)]

1. lowStart

2. highEnd

3. eltdata[Low]

4. While(low<high)

a. While(data[low]<=elt && (low<high)

lowlow+1

While(data[high] >=elt &&(low<high)

b. highhigh+1

c. if low<high then swap(data[low],data[high])

5. swap(data[start],data[high])

6. call QuickSort(data,start,high-1)

7. call QuickSort(data,high+1,end)

Merge Sort

✓ Merging means combing elements of two arrays to form a new array.

✓ Simplest way of merging two arrays is first copy all the elements of one array

into new array and then copy all the elements of other array into new array

.Then sort the new array. Another popular technique to have a sorted array

while merging. It is called merge sort.

Example

Step1:- Let us consider following two arrays A[7] and B[5] are to be merged to form a new

array. The new array say C will have 7+5=12 elements.

0 1 2 3 4 5 6

2 5 7 8 9 12 13

 A

0 1 2 3 4 is pointing to the array element/position currently under consideration

3 5 6 9 15

 B

 0 1 2 3 4 5 6 7 8 9 10 11

 C

Data Structures and Algorithm 2022

86

Step2:- Compare A[0] and B[0]; since A[0] <B[0], Move A[0] to C[0]. Move the pointers if

array A and array C

0 1 2 3 4 5 6

2 5 7 8 9 12 13

 A

0 1 2 3 4 is pointing to the array element/position currently under consideration

3 5 6 9 15

 B

0 1 2 3 4 5 6 7 8 9 10 11

2

 C

Step3:- Compare A[1] and B[0]; Now B[0]<A[1]; Move B[0] to C[1] and move the pointer to

next element in an array.

0 1 2 3 4 5 6

2 5 7 8 9 12 13

 A

0 1 2 3 4 is pointing to the array element/position currently under consideration

3 5 6 9 15

 B

0 1 2 3 4 5 6 7 8 9 10 11

2 3

 C

Step 4:- Continuing the same way, the resultant array C is having all the elements of C in sorted

manner.

Data Structures and Algorithm 2022

87

Merge Sort Algorithm

1. ctrA=L1; ctrB=L2; ctrC=L3

2. while ctrA<=U1 and ctrB<=U2 perform steps 3 through 10

{

3. if A[ctrA] <=B[ctrB] then] then

{

4. C[ctrC]=A[ctrA]

5. ctrC=ctrC+1

6. ctrA=ctrA+1

 }

7. Else

{

8. C[ctrC]=B[ctrB]

9. ctrC=ctrC+1

10. ctrB=ctrB+1

}

} /*end of while loop */

11. If ctrA > U1 then

{

12. While ctrB<=U2 perform steps 13 through 15

13. { C[ctrC]=B[ctrB]

14. ctrC=ctrC+1

15. ctrB=ctrB+1

}}

16. If ctrB>U2 then

17. { while ctrA <=U1 perform steps 18 to 20

18. { C[ctrC]=A[ctrA]

19. ctrC=ctrC+1

20. ctrA=ctrA+1

}

}

Data Structures and Algorithm 2022

88

Heap Sort

✓ The heap is used in an elegant sorting algorithm called heap sort

✓ Let ‘H’ be heap and ‘N’ be the node. ‘H’ is maintained in the memory by linear

array using sequential representation not the linked representation.

✓ ‘H’ is called heap , if each node N of H should satisfy the following property

o The value at N is greater than or equal to the value at any of the descendants.

 Steps in Heap Sort

1. Building the heap tree

2. Repeatedly deletion the root element and place in the array.

Example

 Apply heap sort for the following numbers

 44 30 50 22 60 55 77

STEP 1 [Building the heap tree]

 a) Insert 44

 44

 b) Insert 30

 44

 30

 c) Insert 50

 44

30 50

 Apply Reheap since 44 is less than 50

 50

30 44

Data Structures and Algorithm 2022

89

d) Insert 22

 50

 30 44

 22

e) Insert 60

 50

 30 44

 22 60

Apply Reheap since 60 is greater than 30

 50

 60 44

 22 30

Once again apply reheap since 60 is greater than 50 also

 60

 50 44

 22 30

Data Structures and Algorithm 2022

90

f) Insert 55

 60

 50 44

 22 30 55

 Apply reheap since 55 is greater than 44

 60

 50 55

 22 30 44

g) Insert 77

 60

 50 55

 22 30 44 77

Apply reheap since 77 is greater than 55

 60

 50 77

 22 30 44 55

Once again apply reheap since 77 is greater than 60 also

 77

 50 60

 22 30 44 55

The above tree is called heap tree.

◼ In the heap tree we can observe that the root element is the greater number among the

given number

◼ By repeatedly deleting the root element in the heap tree we can perform the sorting.

Data Structures and Algorithm 2022

91

STEP2[Repeatedly deleting the root element]

 Deleting the root element continuously and stored in the array as follows

 77

 50 60

 22 30 44 55

Delete 77

 60

 50 55

 22 30 44

 77

Delete 60

 55

 50 44

 22 30

 60 77

Delete 55

 50

 30 44

 22

 55 60 77

Data Structures and Algorithm 2022

92

Delete 50

 44

 30

 22

 50 55 60 77

Delete 44

 30

 22

 44 50 55 60 77

Delete 30

 22

 30 44 50 55 60 77

Delete 22

22 30 44 50 55 60 77

 Now the array contains sorted elements.

Heap Sort Algorithm

1. Start

2. For i= 1 to n

a. Insert data[i] into heap

3. For i=n-1 down to 1

a. data[i]delete max from heap /* delete heap include reheaping also.

4. end

Data Structures and Algorithm 2022

93

Searching:

 Searching is a technique to find the data element is present in the data structure or not.

The following are the searching techniques.

1. Linear Search or Sequential Search.

2. Binary Search.

Linear Search or Sequential Search

 In linear search each element is compared with the given item to be searched

for one by one. This method which traverses the array sequentially to locate the given item, is

called Linear search or sequential search. It is applicable to both sorted and unsorted arrays

Algorithm

 /* Initialize counter by assigning lower bound value of the array */

1. Set ctr=L //In C++ ,L is 0

/* Search for the ITEM */

2. Repeat steps 3 through 4 until ctr >U

3. If Ar[ctr]==ITEM then

{ print “Search Succesfull”

printf ctr,”is the location of “, ITEM

break

}

4. ctr=ctr+1

/*end of repeat */

5. If ctr>U then

 printf “Search unsuccessful”

6. end

Data Structures and Algorithm 2022

94

Example: Write the steps to find no 25 in the following array namely A

 0 1 2 3 4 5

10 45 25 90 89 08

 Lower Bound (L)=0 UpperBound(U)=5

 ITEM=25 [number to be searched]

STEP 1

 ctr=L→ ctr=0

 while(0>5)

 {

 If (A [0] == ITEM)

 10 25

// since the above condition is false the IF block will not execute

}

ctr=ctr+1→0+1=1

STEP 2

 Now ctr=1

 while(1<5)

 {

 If A[1]==ITEM)

 45 ==25

// since the above condition is false the IF block will not execute

}

ctr=ctr+1→1+1=2

STEP 3

 Now ctr=2

while(2<5)

 {

 If A[2]==ITEM)

 25 ==25

 PRINT “SEARCH SUCCESSFUL”

 exit // program will be terminated after the execution of this statement

}

Now we get the output

“SEARCH SUCCESSFUL” 2 is the location of the element 25

Data Structures and Algorithm 2022

95

Binary Search

 Binary Search is the popular search technique which searches the given ITEM in

minimum possible comparisons. The binary search requires the array, to be scanned , must be

sorted in any order(for instance , it may be ascending order). In binary search, the ITEM is

searched for in smaller segment (nearly half the previous segment) after each stage. For the

first stage, the segment will contain the entire array.

 To search for ITEM in a sorted array(in ascending order), the ITEM is compared with

middle element of the segment(i.e., in the entire array for the first time. If the ITEM is more

than the middle element, latter part of the segment becomes new segment to be scanned; if the

item is less than the middle element, former part becomes new segment to be scanned, the same

process is repeated for the new segment(s) until either the ITEM is found(search successful) or

the segment is reduced to the single element and still the ITEM is not found(search

unsuccessful.

Algorithm

Case 1: Array A [L:U] is stored in the ascending order

 /* Initialize the segment variables */

1. Set beg=L, last=U

2. REPEAT steps 3 through 6 UNTIL beg>last

3. mid=INT(beg+last/2)

4. If [mid]==ITEM then

{ print “Search successful”

 print ITEM, “found at “,mid

 break

5. If A[mid]<ITEM then

 beg=mid+1

6. If A[mid] >ITEM then

 Last=mid-1

/*end of repeat */

7. If beg !=last

print “Unsuccessful search”

8. End

Data Structures and Algorithm 2022

96

Case 2: Array A[L:U] is stored in the descending order

1. Set beg=L, last=U

2. REPEAT steps 3 through 6 UNTIL beg>last

3. Mid=INT(beg+last/2)

4. If [mid]==ITEM then

{ print “Search successful”

 print ITEM, “found at “,mid

 break

5. If A[mid]<ITEM then

 last=mid+1

6. If A[mid] >ITEM then

 beg=mid+1

/*end of repeat */

7. If beg !=last

print “Unsuccessful search”

8. End

Example: Write the steps to search 44 in the following array

1 2 3 4 5 6 7 8 9 10 11 12

10 12 14 21 23 28 31 37 42 44 49 53

beg=1 last=12

Solution:

Step 1

 beg=1 last=12

 mid=INT(1+12)/2=int (6.5)=6

1 2 3 4 5 6 7 8 9 10 11 12

 28

Step 2

data [mid] i.e., data[6] is 28

28<44 then

beg=mid+1→6+1=7

Data Structures and Algorithm 2022

97

Step 3

7 8 9 10 11 12

 42

beg=7 last=12

Now mid=INT(beg+last)/2=int(7+12/2)=int(9)=9

data [mid] i.e., data[9] is 42

42<44 then

beg=mid+1→9+1=10

Step 4

10 11 12

 49

beg=10 last=12

mid=INT(10+12/2)=int(11)=11

data [mid] i.e., data[11] is 49

49>44 then

last=mid-1→11-1=10

Step 5

mid=INT(beg+last)/2=10+10/2=20/2=10

data[10] ie., 44=44

Search successful at the location number 10

Data Structures and Algorithm 2022

98

1. Seymour Lipschutz (Schaum's Series), Data Structures, McGraw

Hill Education (India) Private Limited Ltd., New Delhi, Revised

First Edition, 2013.

2. https://www.geeksforgeeks.org/stack-data-structure/

3. http://www.it.griet.ac.in/wp-content/uploads/2014/08/UNIT-

V_QA.pdf

4. https://medium.com/learning-python-programming-

language/sorting-algorithms-insertion-sort-selection-sort-

quick-sort-merge-sort-bubble-sort-4f23bda6f37a

https://www.geeksforgeeks.org/stack-data-structure/
http://www.it.griet.ac.in/wp-content/uploads/2014/08/UNIT-V_QA.pdf
http://www.it.griet.ac.in/wp-content/uploads/2014/08/UNIT-V_QA.pdf
https://medium.com/learning-python-programming-language/sorting-algorithms-insertion-sort-selection-sort-quick-sort-merge-sort-bubble-sort-4f23bda6f37a
https://medium.com/learning-python-programming-language/sorting-algorithms-insertion-sort-selection-sort-quick-sort-merge-sort-bubble-sort-4f23bda6f37a
https://medium.com/learning-python-programming-language/sorting-algorithms-insertion-sort-selection-sort-quick-sort-merge-sort-bubble-sort-4f23bda6f37a

