Data Structures and Algorithm 2022

Data Structures
and Algorithms

S.PRABHAYATHI

ASSISTANT PROFESSOR

DEPARTMENT OF COMPUTER SEIENCE & IT
JAMAL MOHAMED COLLEGE (A)

TRICHY - 620 020

Data Structures and Algorithm 2022

Unit: |

Introduction and Overview: Basic Terminology — Data Structures — Data Structure
Operations —Mathematical Notations and Functions — Control Structures — Algorithms:
Time-space Trade-off —Complexity of Algorithms — Asymptotic Notations — Arrays —
Introduction — Linear Array, Representation of Linear Array in Memory, Traversing
Linear Arrays, Inserting and Deleting, Two Dimensional Arrays — Representation of Two
Dimensional Array in Memory.

Data Structures:

A data structure is a specialized format for organizing, processing, retrieving and storing
data.Data structures refer to data and representation of data objects within a program, that is,
the implementation of structured relationships. A data structure is a collection of atomic and
composite data types into a set with defined relationships.

The term Data Structure refers to the organization of data elements and the interrelationships
among them.

Data Structure is a way to store and organize data so that it can be used efficiently.
BASIC TERMINOLOGY, ELEMENTARY DATA ORGANIZATION:

1. DATA- raw fact or values or set of values
. DATAITEM - single unit of values

3. DATA ITEM are of 2 types.
They are: Group item, Elementary item.
Group items divided into sub iigms . e.g. Emp name: first name, nuddle inital. last name.
Elementary items treated as single item, not diyided . e.g0 emp no.

4. ENTITY- Attnibutes or properties with assigned values. Values may be numeric / non numeric.
E.g: Attributes ; Name Age Sex|

Values :ROHINI 34 F

5. ENTITY SET-Entities with similar attributes.

E.g.: All_employee 1n an organisation.

INFORMATION- Data with given attributes or processed data.

FIELD- Single elementary unit of information representing an attributes of an entity.

RECORD- Collection of field values of a given entity.

FILES- Collection of records of the entities 1in a given entity set.

10. PRIMAERY KEY- Value in_a certain field which uniquely determines the record in the file.
EFil= K 1s called primary key and values ki kocalled kevs or key values.

oo -

11. RECORDS

Fixégth WVariable length — ™ File records may_Contain different lengths.
(Thev have min or max length)

All records contain the same data items with the same amount of space assigned to each data
item.

Data Structures and Algorithm | 2022

Dala Structures
|
\ f
Primitive Dala Structures Non-Primitive Data Structures
|
| f | f v
Integer ~ Real Character Boolean Linear Data Non-linear Data
Structures Structures

- Arays Trees
= Linked List Graphs
~»= Stacks
- Queues

LINEAR Data Structure Array Data Structure:

An array is a collection of items stored at contiguous memory locations. The idea is to store multi-
ple items of the same type together. This makes it easier to calculate the position of each element
by simply adding an offset to a base value, i.e., the memory location of the first element of the ar-

ray (generally denoted by the name of the array).

Memory Location

200 201 202 203 204 205206 * * °

Ul B|F|ID|A|JE|C]| =| «]| =
o 1 2 3 4 5 6 = = =

Index

The above image can be looked as a top-level view of a staircase where you are at the base of the
staircase. Each element can be uniquely identified by their index in the array (in a similar way as

you could identify your friends by the step on which they were on inthe above example).

Data Structures and Algorithm 2022

Linked List Data Structure

Alinked list is a linear data structure, in which the elements are not stored at contiguous memory

locations. The elements in a linked list are linked using pointers as shown in the below image:

ead

A 3 8 _)l C _)I D = nun

Data Next

Insimple words, a linked list consists of nodes where each node contains a data field and a

reference(link) to the next node in the list.

Stack Data Structure

Stackis a linear data structure which follows a particular order in which the operations are per-
formed. The order may be LIFO(Last In First Out) or FILO(First In Last Out).

. Push
,—f//
i]]] [[B il]]] .-----_,_,J—'--
-
< Last in, first out
Stack ‘
Insertion and Deletion N
happen on same end

Pop

Data Structures and Algorithm 2022

There are many real-life examples of a stack. Consider an example of plates stacked over one an-
otherinthe canteen. The plate which is at the top is the first one to be removed, 1.e. the plate which
has been placed at the bottommost position remains in the stack for the longest period of time. So,

it can be simply seen to follow LIFO(Last In First Out) /FILO(First In Last Out) order.

Queue Data Structure

A Queue is a linear structure which follows a particular order in which the operations are per-
formed. The orderis First In First Out (FIFO). A good example of a queue is any queue of con-
sumers for a resource where the consumer that came first is served first. The difference between

stacks and queuesisin removing. In a stack we remove the item the most recently added; in a

queue, we remove the item the least recently added.

Queue
Insertion and Deletion)
happen on different ends —
/,/—f - \
Enqueue fear Front Dequeue

First in _first out

NON-LINEAR Data Structure

Tree Data Structure And Algorithms

A tree is non-linear and a hierarchical data structure consisting of a collection
of nodes such that each node of the tree stares a value and a list of references
to other nodes (the “children®).

This data structure is a specialized method to organize and store data in the
computer to be used more effectively. It consists of a central node, structural nodes,
and sub-nodes, which are connected via edges. We can also say that tree data
structure has roots, branches, and leaves connected with one another.

Data Structures and Algorithm 2022

ROOQT

m Level O

Parent Node

3 K_I_) Level 1

evel 2

DA,
Child Nu:clu: j‘ \T) o — level3
Slbllng

Leaf Node

Graph Data Structure And Algorithms

A Graph is a non-linear data structure consisting of nodes and edges. The nodes are sometimes
also referred to as vertices and the edges are lines or arcs that connect any two nodes in the
graph. More formally a Graph can be defined as,

A Graph consists of a finite set of vertices(or nodes) and set of Edges which connect a pair of node:

A 13

Edge

Vertices

In the above Graph, the set of vertices V=1{0,1,2,3,4} and the set of edges E={01, 12, 23, 34, 04,
14,13},

Graphs are used to solve many real-life problems. Graphs are used to represent networks. The
networks may include paths in a city or telephone network or circuit network. Graphs are also
used in social networks like linkedln, Facebook. For example, in Facebook, each person is repre-
sented with a vertex(or node). Each node is a structure and contains information like person id,

name, gender, locale etc.

Data Structures and Algorithm 2022

DATA STRUCTURE OPERATIONS

FOUR MAJOR OPERATIONS
TRAVERSING/VISITING:

= Accessing each record exactly once so that certain items in the record may be
processed.

= SEARCHING:
Finding the location of the record with a given key value, or finding the locations of

all records which satisfy one or more conditions.

= INSERTING: Adding a new record to the structure.

= DELETION: Removing a record from the structure.

= OPERATIONS USED IN SPECIAL SITUATIONS

= SORTING: Arranging the records in some logical order. (Numerical/Alphabetical)

= MERGING:Combining records in two different sorted files into a single sorted file.

= OTHER OPERATIONS

Copying , concatenation , etc.

Mathematical notations and functions

1. Floor and Ceiling Functions:
If x is & real number, then it means that x lies between two integers which are called the floor and ceiling of x. 1.e.

| x| is called the floor of x. It is the greatest integer that is not greater than x.
| % | is called the ceiling of x. It is the smallest integer that is not less than x

If x is itself an integer, then | x | =| x|, otherwise | x |+1=]x|E.q.

| 3.14 | =3, | 85| =-9,|7|=7

| 3.14 |=4,] -85 |=-8,| 7 |=7

Data Structures and Algorithm 2022

2. Remainder Function (Modular Arithmetic):
If k iz any integer and M is a positive integer, then:
k (mod M)

gives the integer remainder when k is divided by M.
E.g

i
P

25(mod 7)
25(mod 5)

3. Integer and Absolute Value Functions:

If % is a real number, then integer function INT{x) will convert x into integer and the fractional part is removed.

Eg
INT (3.14) = 3
INT (-8.5) = -8

The absolute function ABS(x) or | x | gives the absolute value of x i.e. it gives the positive value of x even if x is negative.

E.g

ABS(-15) = 15 or ABS | -15| = 15
ABS(7) =7 or MBS | 7 | = 7
ABS(-3.33) = 3.33 or ABS | -3.33 | = 3.33

4. Summation Symbol (Sums):

The symbel which is used to denote summation is a Greek letter Sigma 7.
Let a1, a2, a3, an be a sequence of numbers. Then the sum a1 + a2 + a3 +

n
2 aj
j=1

where j is called the dummy index or dummy variable.

=1 + 2 + 3 4. .+ N

5. Factorial Function:

nl denctes the product of the positive integers from 1 to n. nl is read as 'n factorial’, i

n! =1 * 2 * 3 % __ . * (n-2) * (n-1) * n
E.g.
4l = 1 * 2 = 3 * 4 - 24

5!l =5 * 41 = 128

_____ + an will be written as:

Data Structures and Algorithm 2022

6. Permutations:

Let we have a set of n elements. A permutation of this set means the amangement of the elements of the set in some order
Eqg

Suppose the set containg 2, b and c. The various permutations of these elements can be: abc, ach, bac, bea, cab, cha.

If there are n elements in the set then there will be nl permutations of those elements. [t means if the et has 3 elements
then there will be 31 = 1" 2" 3 =& permutations of the elements.

7. Exponents and Logarithms:
Expenent means how many times a number is multiplied by itself. If m is a positive integer, then:

am=2a*a*a*..."a(mtimes)
and

a-m=1/ am

E.g.

4 =2%*2%*32%72-18%
2-4=1/24=1/16

The concept of logarithms is related to exponents. If b is a positive number, then the logarithm of any positive number x to
the base b is written as loghx. It represents the exponent to which b should be raised to get xi.e. v = logbx and by = x
Eg

log28 = 3, since 23=8

loglee.e81 = - 3, since 18-3

= 0.881

logbl = 8, since be
=1

logoh = 1, since M1
=b

Data Structures and Algorithm 2022

24 CONTROL STRUCTURES

Algorithms and their equivalent computer programs are more easily understood if they mainly use
self-contained modules and three types of logic, or flow of control, called

1. Sequence logic, or sequential flow

2. Selection logic, or conditional flow

3. lteration logic, or repetitive flow
These three types of logic are discussed below, and in each case we show the equivalent
flowchart.

Sequence Logic (Sequential Flow)

Sequence logic has already been discussed. Unless instructions
are given to the contrary. the modules are executed in the obvious
sequence. The sequence may be presented explicitly., by means b

of numbered steps, or implicitly, by the order in which the INATChabE:A

Algorithm Flow chart equivalent

modules are written. (See Fig. 2.3.) Most processing, even of

complex problems. will generally follow this elementary flow Module B
pattern.

Selection Logic (Conditional Flow) Module C

Selection logic employs a number of conditions which lead 10 a
selection of one out of several alternative modules. The structures
which implement this logic are called conditional structures or Fig. 2.3 Sequence Logic
If structures. For clarity. we will frequently indicate the end of

such a structure by the staterment

[End of If structure.]
or some equivalent.

These conditional structures fall into three types, which are discussed separately.

1. Single Alternative. This structure has the form

If condition, then:
[Module A]
|End of If structure.]

The logic of this structure is pictured in Fig. 2.4(a). If the condition holds, then Module A, which
may consist of one or more statements, is executed; otherwise Module A is skipped and control
transfers to the next step of the algorithm.

l |

No No
Yes Yes
T
Module A Module A Module B
T W
(a) Single alternative. (b) Double altarnativa.
Fig. 2.4

10

Data Structures and Algorithm 2022

2. Double Alternative. This structure has the form
If condition, then:
[Module A]
Else:
[Module B]
[End of If structure.]
The logic of this structure is pictured in Fig. 2.4(b). As indicated by the flow chart, if the
condition holds, then Module A is executed; otherwise Module B is executed.

3. Multiple Alternatives. This structure has the form
If condition(l), then:
[Module Al
Else if condition(2), then:
[Module A,j

Else if condition(M), then:
[Module Ayl

Else:
[Module B]

[End of If structure.]

The logic of this structure allows only one of the modules to be executed. Specifically, either the
module which follows the first condition which holds is executed, or the module which follows the
final Else statement is executed. In practice, there will rarely be more than three alternatives.

Iteration Logic (Repetitive Flow)

The third kind of logic refers to either of two types of structures involving loops. Each type begins
with a Repeat statement and is followed by a module, called the body of the loop. For clarity, we
will indicate the end of the structure by the statement

[End of loop.]
or some equivalent.
Each type of loop structure is discussed separately.
The repeat-for loop uses an index variable, such as K, to control the loop. The loop will usually
have the form:
Repeatfor K=Rto Sby T
[Module|
[End of loop.]

The logic of this structure is pictured in Fig. 2.5(a). Here R is called the initial value, S the end
value or test value, and T the increment, Observe that the body of the loop is executed fitst with
K =R, then with K =R + T, then with K = R + 2T, and 5o on. The cycling ends when K > S. The
flow chart assumes that the increment T is positive; if T is negative, so that K decreases in value,
then the cycling ends when K < §.

11

Data Structures and Algorithm 2022

Algorithm 2.1 is rewritten using a repeat-while loop rather than a Go to statoment.

Algorithm 2.3: (Largest Element in Array) Given a nonempty array DATA with N
numerical values, this algorithm finds the location LOC and the vnlue

MAX of the largest element of DATA.

. [Intilize.) Set K := 1; LOC i= 1 and MAX := DATA). ,,.;'5,..
2. Repeat Steps 3 and 4 while K < N: B Sk R

.-.

3. If MAX < DATA[K], then: .
Set LOC := xmmx:-omm o
(End of If structure.] - Y ey
be SR WK S Bl G A S
[Eﬂd Ofste’ 2‘,;w.l\ -y R I iich M,c"
5. Write: LOC, MAX, . W IR A ¥ v;**’i_}
A oo ATV SRR
|
[x-=]
No Yes
Module Module
(body of icop) {body of loop)
]]
__l K=K~+T]

! !

(a) Repeat-For structure. (a) Repeat-While structure.

Fig. 2.5

The repeat-while loop uses a condition to control the loop. The loop will usually have the form
Repeat while condition:
[Module]
[End of loop.]
The logic of this structure is pictured in Fig. 2.5(b). Observe that the cycling continues until the
condition is false. We emphasize that there must be a statement before the structure that initializes
the condition controlling the loop, and in order that the looping may eventually cease, there must
be a statement in the body of the loop that changes the condition.

Algorithm 2.3 indicates some other properties of our algorithms. Usually we will omit the word
“Step.” We will try to use repeat structures instead of Go to statements. The repeat statement may
explicitly indicate the steps that form the body of the loop. The “End of loop™ statement may explicitly
indicate the step where the loop begins. The modules contained in our logic structures will normally
be indented for easier reading. This conforms to the usual format in structured programming.

Any other new notation or convention either will be self-explanatory or will be explained when
it occurs.

12

Data Structures and Algorithm 2022

1.6 ALGORITHMS: COMPLEXITY, TIME-SPACE TRADEOFF

An algorithm is a well-defined list of steps for solving a particular problem. One major purpose of
this text is to develop efficient algorithms for the processing of our data. The time and space it
uses are two major measures of the efficiency of an algorithm. The complexity of an algorithm is
the function which gives the running time and/or space in terms of the input size. (The notion of
complexity will be treated in Chapter 2.)

Each of our algorithms will involve a particular data structure. Accordingly, we may not always
be able te use the most eificicnt algorithm, since the choice of data structure depends on many
things, including the type of data and the frequency with which various data operations are
applied. Sometimes the choice of data structure involves a time-space tradeoff: by increasing the
amount of space for storing the data, on¢ may be able to reduce the time needed for processing the
data, or vice versa. We illustrate these ideas with two examples.

Searching Algorithms

Consider a membership file, as in Example 1.6, in which each record contains, among other data,
the name and telephone number of its member. Suppose we are given the name of a member and
we want to find his or her telephone number. One way o do this is to linearly search through the
file. i.c., to apply the following algorithm:

Linear Search

Search each record of the file, one at a time, until finding the given Name and hence the
corresponding telephone number.

First of all, it is clear that the time required to execute the algorithm is proportional to the
number of comparisons. Also, assuming that each name in the file is equally likely to be picked, it
is intuitively clear that the average number of comparisons for a file with # records is equal to n/2;
that is, the complexity of the linear search algorithm is given by Cin) = n/2,

The above algorithm would be impossible in practice if we were searching through a list
consisting of thousands of names, as in a telephone book. However, if the names are sorted
alphabetically, as in telephone books, then we can use an efficient alzorithm called binary search.
This algorithm is discussed in detail in Chapter 4, but we briefly describe its general idea below.

Binary Search
Compare the given Name with the name in the middle of the list; this tells which half of the list
contains Name. Then compare Name with the name in the middle of the correct half to determine
which quarter of the list contains Name. Continue the process until finding Name in the list,

One can show that the complexity of the binary search algorithm 1s given by

13

Data Structures and Algorithm 2022

Cin) = log, n
Thus, for example. one will not require more than 15 comparisons to find a given Name in a list
containing 25 000 names.

Although the binary search algorithm is a very efficient algorithm, it has some major drawhacks.
Specifically, the algorithm assumes that one has direct access to the middle name in the list or a
sublist. This means that the list must be stored in some type of array. Unfortunately, inserting an
element in an array requires elements to be moved down the list, and deleting an element from an
array requires element 10 be moved up the list.

The telephone company solves the above problem by printing a new directory every year while
keeping a separate temporary file for new telephone customers. That is, the telephone company
updates its files every year. On the other hand. a bank may want to insert a new customer in its file
almost instantaneously. Accordingly, a linearly sorted list may not be the best data structure for a bank.

An Example of Time-Space Tradeoff

Suppose a file of records contains names, social security numbers and much additional information
among its fields. Sorting the file alphabetically and running a binary search is a very efficient way
to find the record for a given name. On the other hand, suppose we are given only the social
security number of the person. Then we would have to do a linear search for the record, which is
extremely time-consuming for a very large number of records. How can we solve such a problem?

‘Analysing Algorithm (or) Complexity of Algorithm: To select the best algonthms form
the available algorithms we have to analyze the algorithms.
(a). Execution time (b).Memory space.
Space complexity: A space complexity of an algorithms 1s the amount of memory that an algorithm

needs to run the program.
Eg: 1 Algonthm xyz(xyv.z)
{
etz yHatv=2)) / ((x +y) +40);
¥
Eg: 2 Algonthm(z.n)
{
total=0.0
for=1tondo
total=total+(x(1))
retum total
¥

Here a space complexity of an algorithm 1s add (3 n) because
(1) To store x(1) we need n locations (ii) to store 1, total n we need 3 locations.
Time complexity: It is the amount of computer time for a program needs to run its completion.
Eg:1 Algorithm add (x.n)
{
Total =0.0:
ForI=Itondo
Total= total + x{i);| Eeturn total; }

14

Data Structures and Algorithm 2022

Asymptotic Notations

Asymptotic notations are the mathematical notations used to describe the
running time of an algorithm when the input tends towards a particular
value or a limiting value.

There are mainly three asymptotic notations:

1. Big-O notation
2. Omega notation

3. Theta notation
1. Big oh notation (0):

It is define as upper bound and upper bound on an algorithm is the most amount of
time required (the worst case performance]l.

Big oh notation is used to describe asymptotic upper bound.

Mathematically, if f{n) describes the running time of an algorithm; f{n) is 0(g(n)) if
there exist positive constant C and n0 such that,

0 <=f{n) <=Cg(n) forall n >=no

n =used to give upper bound an a function.
If a function is O(n), it is automatically O(n-square) as well.
2. Big Omega notation (Q) :

It is define as lower bound and lower bound on an algorithm is the least amount of
time required (the most efficient way possible, in other words best case).

Just like O notation provide an asymptotic upper bound, © notation provides
asymptotic lower bound.

Let f(n) define running time of an algorithm;
f(n) is said to be Q(g (n)) if there exists positive constant C and (n0) such that

0<=Cg(n) <=f(n) forall n >= n0

n = used to given lower bound on a function

If a function is ﬂ{n—square) it is automatically Q(n) as well.

15

Data Structures and Algorithm 2022

3. Big Theta notation (@) :

Itis define as tightest bound and tightest bound is the best of all the worst case times

that the algorithm can take.

Let f(n) define running time of an algorithm.
f(n) is said to be ®(g(n)) if f(n) is 0(g(n)) and f(n) is Q(g(n)).

Mathematically,

0<=f(n) <=C1g(n) for n >=n0
0<=C2g(n) <=f(n) forn >=n0

Merging both the equation, we get :

0<=C2g(n) <=f(n) <=Cig(n) for n >=n0

The equation simply means there exist positive constants C1 and C2 such that f(n)

is sandwich between C2 g(n) and C1g(n).

ARRAY:

Array:-

An array 15 defined as an ordered set of similar data 1lems. All the data items of an array are
stored n consecutive memory locations in RAM. The elements of an array are of same data type
and each item can be accessed using the same name,

Declaration of an array:- We know that all the variables are declared before they are used in
the program. Simularly, an array must be declared before 1t 15 used. During declaration, the size
of the array has to be specified. The size used during declaration of the array informs the
compler to allocate and reserve the spectfied memory locations,

16

Data Structures and Algorithm 2022

INTRODUCTION:

Data structures are classified as either linear or non — linear.

The linear relationship between the elements represented by means of sequential
memory locations. These linear structures are called arrays.

» The operations performed in an array are,

» Traversal — Processing each element in the list.

» Search — Finding the location of the element with a given value or the record with a

YV V V

given key.

Insertion — Adding a new element to the list.
Deletion — Removing an element from the list.
Sorting — Arranging the elements in an order.

Merging — Combining two lists into a single list.

LINEAR ARRAYS:

o

A linear array is a list of a finite number n of homogenous data elements (data elements
of same type).

The elements of the array are referenced by an index set consisting of n consecutive
numbers.

The elements of the array are store respectively in successive memory locations.
The number n of elements is called the length or size of the array.
The index set consists of the integers 1, 2,.... ,n.

The length or the number of data elements of the array can be obtained from the index
set by the formula,

Length = UB-LB+1

UB - largest index called upper bound.
LB — smallest index called lower bound.
Length=UBwhen LB =1
The elements of an array A can be denoted by:
o Subscript notation : A1,A2,A3,....An
o Paranthesis notation : A(1),A(2),A(3).....A(N)
o Bracket notation : A[1],A[2],A[3]....A[N]
Example: Let DATA be a 6 — element linear array of integers such that
e DATA[1]=47 DATA[2]=56 DATA[3]=29
e DATA[4]=35 DATA[5]=87 DATA[6]=15

Array can be represented by

17

Data Structures and Algorithm 2022

DATA

47 56 29 35 87 15

§]
th
o)}

(%]
rJ
O

-

-2

L

.

N

th
o0
|

REPRESENTATION OF LINEAR ARRAYS IN MEMORY::

> Let LA be a linear array in memory of the computer
LOC (LA [K]) = address of the element LA [K] of the array LA.

AILTOCATION OF ARRAY:

STATfE/\

DY NAMIC—» readn, then declare
arrav _with n elements.

Compile time during program execution.

LENGTHOR SIZE OF THE ARRAY: Numbers of data elements ofthe array.
LENGTH=UB-LB+1
UB-upper bound LB-lower bound
Eg.: DATA
249 56 429 1
1 2
Length 5-1+1=5

5]
¥]]

BY

3

e
Lh

LOCATION: Address ofany element ofa linear array LA.
alil = B+(i - LB)*s
B-Baseaddress (i.e.)address ofthe firstelement of LA.

S-Size or number of words per memory cell for the amray.

18

Data Structures and Algorithm 2022

3 —ya[1] 1000
8] 100 size =2 bytes B=1000 i=418<1
a[3) 1004 .
- gl 0% ==l
5 100 =1000+3%
al6| 1010 =004
B[00

» The elements of LA are stored in memory cells.

» The computer keep track only of the address of the first element of LA , denoted by
Base(LA) called the base address of LA.

» Using this the address is calculated. The formula is
LOC(LA[K]) = Base(LA)+w(k-lower bound)
» w = number of words per memory cell for the array LA.

» Example: Consider the array DATA , Base(DATA)=200 and w=4 words per memory
cell for DATA.

Then LOC(DATA[47])=200
LOC(DATA[56]=204
LOC(DATA[29]=208....

TRAVERSING LINEAR ARRAYS:

» Accessing and processing (visiting) each element of array exactly once.
» Algorithm using repeat while loop.

o[Initialize counter] set K=LB

oRepeat steps 3 and 4 while K UB

o[visit element]apply PROCESS to LA[K].

o[Increase counter] set K=KH

19

Data Structures and Algorithm 2022

[End of step 2 loop].
Exit.

Algorithm using repeat for loop
Repeat for K=LB to UB
Apply PROCESS to LA[K]
[End of loop]

VvV V V¥V VY VYV

> Exit

E.g.: array AUTO records the number of automobiles sold each year from 1932 through
1984.

a) Find the mumber NUM ofvears during which more than 300 automobiles were
sold.
1. [Initialization step]set NUM=0
2. Repeat forK=1932 to 1984
If AUTO [k] > 300 then set NUM=NUM-1
Endofloap.
3. Return
b) Printeach vearand thenumber of automobiles sold in that year.
L. Repeat for K=1932 to 1984
Wiite K , AUTO[K]
[Exd of loop]

2. Retum.

20

Data Structures and Algorithm 2022

INSERTING AND DELETING:

INSERTING ANEWELEMENT TOTHE LIST

Let A be acollection of data element in_memorv. Inserting refers to adding
another element to the collection A.

Inserting an element at the end can be done easilv provided memorv space
allocated is larger enough to accommodate the additional element.

Inserting an element in middle requires on a average half of the elements to
be moved downward to new locations to accommodate the new element
and keep the order of elements.

Algorithm INSERT (LA . N K _ITEM)

1. [Initialize counter] set J=N_
2. Repeat steps 3 and 4 while J = K.
3. [More Jy element downward] set LA[T+]1 [=LA[T]
4. [Decrease counter] set J=]-1
[End of step 2 loop]
3. [Insert element | set LA[K]=ITEM
6. [Reset N]set N=N+ 1
7. Exit
#
1 | Brown 1
, Brown
. | Daris R :
- - Daris
~ |John) WF "
3 . 3 or
Smith
4 Insert Ford 1 John
Wagner _
s k=3 s | Smith
6 6 Wagner
8 2
Algorithm steps (1) =3
(2yWhileJ = K {i.e. 3 = 3)loop
ba—3 Sa+—4 4 43
=4 I=3 J=2 loop ends.
» 3% position is now free for_item tobe inserted.

21

Data Structures and Algorithm 2022

DELETING ANITEM FROM THE LIST

<+ ‘Deleting _ refers to the operation of removing one of the elements from the

location.
%+ Deleting an element at the ‘end’ ofan array is not difficult.
%+ Deleting an element in middle requires subsequent elements to be moved
onelocation upward to “fill up’ the amrav.
Algorithm DELETE (LA N K. ITEM)
1. Set ITEM=LA(K)
2. Repeatfor J=K to N-1.
more J+1;: element upward] set LA{T)=LA(J+1)
End of loop]
3. [Resetthenumber N of elements in LA, set N=N-1.
4. Exit.
: Brown 1 Brown
2 Daris 2 Ford
5 Ford 3 John
+ ohn Delete Daris 1 Smith
5 | Smith K=2 s | Taylor
¢ | Taylor N=7 6 Wagner
7 | Wagner !
8 8

(DHLA(K) =2
(2)JI=_2

O th = W N

(33N =N-1 = 7-1 =6. Daris deleted.

22

Data Structures and Algorithm 2022

Two - Dimension Array:

A two-dimension m x n array, A is it collection of m.n data elements such that each elements
is specified by pair of integers (such as J,K) called subscripts, with the property that,

1<=J<=m,1<=K=n

There is a standard way of drawing a two-dimensional m x n array A where, the elements of
A form a rectangular array with m rows and n columns and where, the elements A[J.K] <
appears in row J and column K,

Suppose, A is a two-dimensionel m x n array. The first dimension of A contains the index set 1, .. m with lower bound |
and upper bound m, and the second dimension of A contains the index set 1, 2, .. n with lower bound 1 and upper
bound n. The length of a dimension is the n0 of integers in its index set. The pair of lengths m x n is called size of the

array.

Programming language allows one to define multi-dimensional array in which lower bounds are not 1. However, the
index set for each dimension is still consists of consecutive integers from the lower bound to the upper bound of the

dimension. The length of a given dimension can be obtained from the formula,

|]

1 2 3 4
— 1 A[1,1] A[1,2] A[1,3] A[1,4]
__: 2 A[2,1] Al2,2] A[2,3] A[2,4]
3 A[3,1] A[3,2] A[3,3] A[3,4]

Fig: Two-dimension 3x4 array

23

Data Structures and Algorithm

2022

Length = UB - LB + 1
For two-dimensional array we can find the length of the array by the following procedure,

First we will find the length of one-dimensional row array by the formula,
Ly =UB; - LB; + 1

Do this again one-dimensional column array.

Lz =UBs - LBy + 1

Length of array (number of elements in two-dimensional array)

L=1LxLs

Example

Given array int A(2:5,-3:1)

The lengeh of row one-dimensional array (5 - 2 +1 = 4)

The length of column one-dimensional array (1 - (-3) +1=5)
Length of given array = 4 x5 = 20

So, there are 20 elements on the given array.

Representation of two-dimensional array in memory:

[: \
1 2 3 q
Al1,1] A[1,2] A[1,3] Al1,4]
A[2,1] Al2,2] Al2,3] A[2,4]
Al3,1] A[3,2] A[3,3] Al3,4]

Fig: Two-dimension 3x4 array

> Let, A be a two-dimensional array m x n array. Although A is pictured as a
rectangular array of elements with m rows and n columns, the array will be
represented in memory by a block m.n sequential memory location. Specifically, the
programming language will store the array A either,

column by column is called column major order or
Row by row, in row major order

Given Fig. 3. shows these two ways when A is a two-dimensional 3 x 4 array. We
emphasize that the particular representation used depends upon the programming
language, not the user.

> Recall that, for a linear array, the computer does not keep track of the address
LOC(LAIK]) of every element LA[K] of LA, but does keep track of Base (LA) the
address of the first element of LA. The computer uses the formula.

LOC[LA[K]] = Base(LA) +W(K-1)

24

Data Structures and Algorithm | 2022

For 3x4 array Column Major Order (CMO)

Alxr,1] 200
1 2 3 4 Al2,1] 201 Colummn 1
Al2,1] 202
1 Al1,1] Al1,2] | A[1,3]1 | A[1,4] AlL2] 203
2 A[2,1]1 | A[2,2] | A[2,3] | A[2,4] bl 204 cotumn 2
A[3,2] 205
= A[3,1] AL3,2] | AL3,3]1 | A[3,4] A[1,3] 206
Al2,3] 207 Column 3
Al[3,3] 208
A[1,4] 209
Al2,4] 210 Colummn 4
Concept: Al3,4] 211
Column Major Order (CIVIO) ELEMEMNTS ADDRESS
For 3x4 array Row Major Order (RMO)
Al1,1] 200 —
1 2 3 4 Al1,2] 201
— Row 1
Al1,3] 202
1 A[1,1] | A[1,2] | A[1,3] | A[1,4]
Al1,4] 203 _J
2 Al2,1] Al2,2] | A[2,3] Al2,4] Al2,1] 204)
Al2,2] 205
3 A[3,1] | A[3,2] | A[2,3] | AL[3,4] - L Row 2
A[2,3] 206
Al2,4] 207
A[3,1] 208 —
A[3,2] 209
p— Row 3
A[3,3] 210
Concept: A[3,4] 211]
Row Major Order (RIMO) ELEMENTS ADDRESS

To find the address of LA[K] in time independent of K. Here, w is the number of words per memaory cell for the array LA,

and 1is the lower bound of the index set of LA.

A similar situation also holds for any two-dimensional mx narray A That is, the computer keeps track of base [A] the
address of the first element A[1,1] of A - and computes the address LOC (A[J, KJ) of A[J, k] using the formula,

(Column major order)

LoC (A[4k])=Base (4)+w(A(k-1)+(s-1)]
(Row major order)

LOC (A[J, K]) =Base (A) +w [N(J-1) + (k- 1)]
Again, w denotes the number of words per memorY location for the array A . Note that the formula is linear in J and K
and that one can find the address LOC (4[4, K]} in time independent of Jand K.

25

Data Structures and Algorithm 2022

Unit: 11

Stacks- Array Representation of Stacks — Operations on Stack — Arithmetic Expressions:
Polish Notation— Reverse Polish Notation — Evaluation of a postfix expression —
Transforming Infix Expression into Postfix — Recursion — Queues — Representation of
Queues — Operations on Queues — Deques.

2.1 STACK DEFINITION

A stack is an ordered collection of homogeneous data elements where the insertion and deletion
operations take place at one end only. The insertion and 'deletion operations in the case of a
stack are specially termed PUSH and POP, respectively, and the position of the stack where
these operations are performed is known as the TOP of the stack. An element in a stack is
termed an ITEM. The maximum number of elements that a stack can accommodate is termed
SIZE. Figure shows a typical view of a stack data structure.

PUSH POP

Bottom
Figure 4.2 Schematic diagram of a stack.

2.2 ARRAY REPRESENTATION OF STACKS : A stack may be represented in the
memory in various ways. There are two main ways: using a one-dimens iona | array and
a single linked list.

Array Represe ntation of Stacks: First we have to allocate a memory block of suff
icient size to accommodate the full capacity of the stack. Then, starting from the first location
of the memory block, the items of the stack can be stored in a sequentia | fashion.

In Figure , Item i denotes the ith item in the stack; | and u denote the index range of the array
in use; usually the values of these indices are 1 and SIZE respectively. TOP is a pointer to point
the pos ition of the array up to which it is filled w ith the items of the stack. With this

26

Data Structures and Algorithm 2022

Representation, the following two ways can be stated:

EMPTY: TOP <1
FULL.: TOP = u
Index 1D Array Stack_Head
! itemn 1 Bottom
I+1 tem 2 Item, H _I_.T ..._.{:D
r+2 . T]]

: - Top
| e =n

. | #emt PX]

Sze=u+il-—-1
(a) Array representation of a stack (b) Linked list representation of a stack

Linke d List Represe ntation of Stacks : Although array representation of stacks is very
easy and convenient but it a llows the representation of only fixed sized stacks. In several
applications, the size of the stack may vary dur ing program execution. An obvious
solution to this problem is to represent a stack using a linked list.

A single linked list structure is sufficient to represent any stack. Here, the DATA field is
for the ITEM, and the LINK field is, as usua], to point to the next' item. Above Figure b
depicts such a stack using a single linked list.

In the linked list representation, the first node on the list is the current item that is the
item at the top of the stack and the last node is the node containing the bottom-most item.
Thus, a PUSH operation w ill add a new node in the front and a POP operation will remove
anode from the front of the list.

2.3 OPERATIONS ON STACK
The basic operations required to manipulate a stack are:
PUSH:To insert an item into a stack,

POP:To remove an item from a stack, STATUS: To know the present state of a stack

Algorithm Push_Array

Input: The new item ITEM to be pushed onto iL

Ouipur: A stack with a newly pushed ITEM at the TOP position.
Data structure: An array A with TOP as the pointer.

Steps:
1. If TOP 2 SIZE then
3 Print “Stack is full”
3. Else
4. TOP = TOP + |
5 A[TOP] = ITEM
6. EndIf
7. Stop

27

Data Structures and Algorithm 2022

Here, we have assumed that the array index varies from 1to SIZE and TOP points
the location of the current top-most item in the stack. The following algorithm Pop_
Array defines the POP of an item from a stack which is represented using an array A.
Algorithm Pop_Array
Input: A stack with clements.

Output: Removes an ITEM from the top of the stack if it is not empty.
Dara structure: An array A with TOP as the pointer.

Steps:
1. IfTOP < 1 then
2 Print “Stack is empty”™
3. Else
4. ITEM = A[TOP]
s TOP = TOP — 1
6. Endlf
7. Stop

Now let us see how the same operations can be defined for a stack represented
with a single linked list.
Algorithm Push_LL
Input: ITEM is the item to be inserted.
Output: A single linked list with a newly inserted node with data content ITEM.
Data structure: A single linked list structure whose pointer to the header is known from
STACK_HEAD and TOP is the pointer to the first node.

Steps:

1. new = GetNode(NODE)
/* Insert ar from %/

2. new—DATA = ITEM

3. new—-LINK = TOP

4. TOP = new

5. STACK_HEAD-LINK = TOP
6. Stop

Algorithm Pop_LL

Input: A stack with elements.

Output: The removed item is stored in ITEM.

Data structure: A single linked list structure whose pointer to the header is known from
STACK_HEAD and TOP is the pointer to the first node.

Steps:
1. If TOP = NULL
y Print “Stack is empty”
- Exit
4. Else
- ptr = TOP—-LINK
6. ITEM = TOP-DATA
1 STACK_HEAD—-LINK = ptr
8. TOP = ptr
9. Endlf

10. Stop

Arithmetic Expressions: An arithmetic expression consists of operands and operators.
Operands are variables or constants and operators are of various types such as
arithmetic unary and binary operators and Boolean operators. In addition to these,
parentheses such as '(' and ')" are also used.

28

Data Structures and Algorithm 2022

Thus, with the below rules of precedence and associativity of operators, the
evaluation will take place for the above-mentioned expression in the sequence
(sequence is according to the number 1, 2, 3, ..., etc.)

Table 4.1 Precedence and associativity of operators

Operators Precedence Associativity
- (unary), +(unary), NOT 6 -
A (exponentiation) 6 Right to left
* (multiplication), / (division) - Left to right
+ (addition), — (subtraction) 4 Left to right
<, <=, 4, <>, = 3 Left to right
AND 2 Left to right
OR, XOR 1 Left to right

Example: Suppose we want to evaluate the following parenthesis free
arithmetic expression 2 13 +5*212-12/6

First we evaluate the exponentiation to obtain 8 + 5 * 4 -12/6

Then we evaluate the multiplication and division to obtain 8 + 20 -2. Last we
valuate the addition and subtraction to obtain the final result, 26. Observe that
the expression is traversed three times, each time corresponding to a level of
precedence of the operations.

2.4 POLISH NOTATION

For most common arithmetic operations, the operator symbol is placed
between its two operands. For example, A+B C-D E*F G/H. This is called
infix notation.

Polish notation, named after the Polish mathematician Jan Lukasiewicz, refers
to the notation in which the operator symbol is placed before its two operands.

For example, +AB, -CD, *EF, /GH

We translate, step by step, the following infix expressions into polish notation
using brackets to indicate a partial translation:

(A+B)*C
A+(B*C)
(A+B)/(C-D)

[+AB]*C=*+ABC
A+[*BC]=+A*BC
[+AB]/[-CD]=/+AB-CD

The fundamental property of polish notation is that the order in which the
operations are to be performed is completely determined by the positions of
the operators and operands in the expression.

29

Data Structures and Algorithm 2022

2.5 REVERSE POLISH NOTATION refers to the analogous notation in which the
operator symbol is placed after its two operands: AB+, CD-, EF*,GH/.

Again, one never needs parentheses to determine the order of the operations in any
arithmetic expression written in reverse Polish notation.

Sr.No. Infix Notation Prefix Notation Postfix Notation
1 a+hb +ab ab+
2 (@a+b)=c s+abc ab+cx
3 ax(b+c) a+he abc+x
4 alb+c/d +/abl/cd ablcd/+
5 (a+b)x(c+d) s+ab+cd ab+cd+s«
6 ((a+b)xc)-d -++abcd ab+cxd-

The computer usually evaluates an arithmetic expression written in infix notation in
two steps.

First, it converts the expression to postfix notation,

and then it evaluates the postfix expression.

In each step, the stack is the main tool that is used to accomplish the given task. We
illustrate these applications of stack in reverse order. That is, first we show how
stacks are used to evaluate postfix expressions and then we show how stacks are
used to transform infix expressions into postfix expressions.

2.6 EVALUATION OF A POSTFIX EXPRESSION

Suppose P is an arithmetic expression written in postfix notation. The following
algorithm, which uses a STACK to hold operands, evaluates P.

Algorithm:

This algorithm finds the VALUE of an arithmetic expression P written in postfix
notation.
1. Add a right parenthesis “)” at the end of P. [This acts as a sentinel]
2. ScanPfromlefttorightandrepeatsteps3and4foreachelementofP until
the sentinel“)” is encountered.
3. If an operand is encountered, put it on STACK.
4. If an operator is encountered, then
a. Remove the two top elements of STACK, where A
is the top element and B is the next to top
element.
b. Evaluate B operator A
Place the result of step

30

Data Structures and Algorithm 2022

(b) back on STACK [End

of If structure]

[End of Step 2loop]
5.Set VALUE equal to the top
element on STACK. 6.Exit

Let us see how the above algorithm will be

implemented using an example. Postfix String :

123*+4-

Initially the Stack is empty. Now, the first three characters scanned are 1,2 and 3,
which are

operands. Thus they will be pushed into the stack in that order.

3

2 1

Exprassion
1

Stack

Next character scanned is "*", which is an operator. Thus, we pop the top
two elements from the stack and perform the"*"operation with the two
operands. The second operand will be the first element that is popped.

Exprass] on

Stack

The value of the expression(2*3) that has been evaluated(6) is pushed into the stack.

3 1

Exprassion
1

Stack

Next character scanned is "+", which is an operator. Thus, we pop the

top two elements from the stack and perform the "+" operation with the
two operands. The second operand will be the first element that is

popped.

14+6=7

EXprass] on

Stack

31

Data Structures and Algorithm 2022

The value of the expression (1+6) that has been evaluated(7) is pushed into the
stack.

Exprasslon
r

Stack

Next character scanned is "4", which is added to the stack.

a
7

Stack

Exprassion

, which is an operator. Thus, we pop the top two elements

-" operation with the two operands. The second

Next character scanned is
from the stack and perform the

7-4=3

operand will be the first element that is popped. =

The value of the expression (7-4) that has been evaluated(3) is pushed into the stack.

Exprassion

Now, since all the characters are scanned, the remaining element in the
stack (there will be only one element in the stack) will be returned.
End result : Postfix String : 123*+4-

Result: 3

To illustrate the algorithm EvaluatePostfix, let us consider the following expression:
Infix: A+(B*C)/D
Postfix: ABC*D/+
Input: ABC*D/+#withA=2B=3C=4andD=6

Read symbol Stack
A 2 PUSH(A = 2)
B 23 PUSH(B = 3)
C 234 PUSH(C = 4)
. 212 POP(4), POP(3), PUSH(T = 12)
D 2126 PUSH(D = 6)
/ 22 POP(6), POP(12), PUSH(T = 2)
- 4 POP(2), POP(2), PUSH(T = 4)
value = POP()

32

Data Structures and Algorithm

2022

2.7 TRANSFORMING INFIX EXPRESSIONS INTO POSTFIX EXPRESSIONS

Let Q be an arithmetic expression written in infix notation. Besides
operands and operators, Q may also contain left and right parentheses.
We assume that the operators in Q consist only of exponentiations,
multiplications, divisions, additions and subtractions and that they have
the usual three levels of precedence as given above. We also assume that
operators on the same level, including exponentiations, are performed
from left to right unless otherwise indicated by parentheses.

The following algorithm transforms the infix expression Q into its
equivalent postfix expression P. The algorithm uses a stack to
temporarily hold operators and left parentheses. The postfix expression
P will be constructed from left to right using the operands from Q and the
operators which are removed from STACK. We begin by pushing a left
parenthesis onto STACK and adding a right parenthesis at the end of Q.
The algorithm is completed when STACK is empty.

Algorithm : POLISH(Q,P)

Suppose Q is an arithmetic expression written in infix notation. This
algorithm finds the equivalent postfix expression P.
1. Push “(“ onto STACK and add “)” to the end of Q.
2. Scan Q from left to right and repeat
steps 3 to 6 for each element of Q
until the STACK is empty.
. If an operand is encountered, add it to P.
. If a left parenthesis is encountered, push it onto STACK.
. If an operator is encountered, then

o b~ w

a. Repeatedly pop from STACK and add to P each operator which has

the same precedence as or higher precedence than the operator.

b. Add
operat
or to
STACK.
[End of
if
structu
rej
6. If a right parenthesis is encountered, then
a. Repeatedly pop from STACK and add to P each
operator until a left parenthesis is encountered.
b.Remove
the left
parenthesi
s. [End of if
structure]
[End of step 2 loop]
7.Exit

33

Data Structures and Algorithm 2022

EXAMPLE: Let us illustrate the procedure Infix7oPosifix with the following arithmetic expression:

Input: (A+B)"C-(D *E)/F) (infix form)
Read Stack Ourput
symbol
Initial (
1 (
2 (A
3 ((+ A
4 ((+ AB
5 (AB+
6 » AB+
7 (» AB + C
8 (- AB +CA
9 (—(AB+C»
10 (- (AB+C~*D
11 (-(* AB+C*D
12 (=-(* AB + C » DE
13 (- AB+CA*ADE*
14 (~/ AB + CADE *
15 (-/ AB+CADE*F
16 AB+C* "DE*F/-

2.8 RECURSION:

Output: AB+C* DE *F/ -

(postfix form)

Recursion is an important concept in computer science. Suppose P is a procedure containing
either a call statement to itself or a call statement to a second procedure that may eventually
result in a call statement back to the original procedure P. then P is called recursive
procedure. A recursive procedure must have the following two properties:

Base Case: It is nothing more than the simplest instance of a problem, consisting of a condition

that terminates the recursive function. This base case evaluates the result when a given

condition is met.

the inputs decreased in size or complexity.

Recursive Step: It computes the result by making recursive calls to the same function, but with

For example, consider this problem statement: Print sum of n natural numbers using recursion.
This statement clarifies that we need to formulate a function that will calculate the summation of
all natural numbers in the range 1 to n. Hence, mathematically you can represent the function as:

Fn)=1+2+3+4+

34

+(n-2) + (n-1) +n

Data Structures and Algorithm

2022

It can further be simplified as:

k=n
F = 3 (9

You can breakdown this function into two parts as follows:

Breakdown of Problem Statement

k=n

Fy = (k)

k=0

I
v v

Base Case Recursive step
If(n -E'= 0) F(n) = n + F(n-1)
Return;
}

35

Data Structures and Algorithm 2022

2.9 QUEUE DEFINITION Like a stack, a queue is an ordered collection of homogeneous
data elements; in contrast with the stack, here, insertion and deletion operations take
place at two extreme ends. A queue is also a linear data structure like an array, a stack
and a linked list where the ordering of elements is in a-linear fashion.

The only difference between a stack and a queue is that in the case of stack insertion and
deletion (PUSH and POP) operations are at one end (TOP) only, but in a queue insertion
(called ENQUEUE) and deletion (called DEQUEUE) operations take place at two ends
called the REAR and FRONT of the queue, respectively. Figure represents a model of a
queue structure. Queue is also termed first-in first-out (FIFO)

Rear Frome
l i
Enqueeve e = o = - —-— Doguouc

Figure 5.2 Model of a gueue

2.10 REPRESENTATION OF QUEUES :There are two ways to represent a queue in
memory: Using an array & Using a linked list The first kind of representation uses a one-
dimensional array and it is a better choice where a queue of fixed size is required. The
other representation uses a double linked list and provides a queue whose size can vary
during processing.

Representation of a Queue using an Array A one-dimensional array, say Q]I ... N], can be
used to represent a queue. Figure shows an instance of such a queue. With this
representation, two pointers, namely FRONT and REAR, are used to indicate the two ends
of the queue. For the insertion of the next element, the pointer REAR will be the
consultant and for deletion the pointer FRONT will be the consultant.

Three states of a guecuc with this representation are given below:
Queune is empty
FRONT = 0
REAR = O (and/or)
Queune is full
REAR = N
FRONT = 1 (when full by compact)
Queune contains elements = 1

FRONT = REAR
Number of clements = REAR — FRONT + 1

FRONT:=FRONT+1

Similarly, whenever an element is added to the queue, the value of REAR
is increased by 1; this can be implemented by the assignment
REAR:=REAR+1

4 11 12 13 14 15
/ a[0] a[1] a[2] af3] fa[4] a[s] a[6]
front rear

Array representation of a queue

36

Data Structures and Algorithm 2022

2.11 OPERATION ON QUEUE
Procedure: QINSERT (QUEUE,N, FRONT, REAR, ITEM)

This procedure inserts an element ITEM into a queue.

1. f FRONT=1 and REAR=N, or if FRONT=REAR+1, then Write OVERFLOW and
return.

2. If

FRONT:=NU

LL then Set

FRONT:=1

and

REAR:=1

Else if

REAR=N

then

Set REAR :=1

Else

Set REAR :=REAR+1

3. Set QUEUE[REAR]:=ITEM

4, Return
PROCEDURE: QDELETE(QUEUE, N, FRONT, REAR, ITEM)

This procedure deletes and element from a queue and assigns it to the variable ITEM.
1. If FRONT:=NULL then write UNDERFLOW and return

2. Set ITEM:=QUEUE[FRONT]

3. If FRONT=REAR then

Set FRONT:=NULL and REAR:=NULL

Else if

FRON

T=N

then

Set

FRON

T:=1

Else

Set FRONT:=FRONT+1

4. Return

37

Data Structures and Algorithm 2022

Linked Representation of Queue:

Queue Q:
!
\“ B 1 [
AAA BBB T | CC > DDB-
: |
FRONT REAR

Inse\rt;EEE' into queue Q:
>

AAA| —> | BBB » CCC| r—| DDD EEE
A A A X
FRONT REAR REAR
Delete from queue Q: w
\ > —> > >
i AAA i BBB CCC DDD) EEE | X
FRONT FRONT REAR

7

LINK Q-INSERT (INFO, LINK, FRONT, REAR, AVAIL, ITEM)

1. [Available space?] IF AVAIL= NULL, then write OVERFLOW and EXIT.
2. [Remove first node from AVAIL first]
Set NEW= AVAIL and AVAIL= LINK [AVAIL]

3. Set INFO[NEW]=ITEM and LINK

[NEW]= NULL (Copies ITEM into

new node)
4. IF(FROM= NULL) then

FRONT=REAR=NEW (If Q is empty then

ITEM is the first element in Q)

Else set LINK [REAR] =NEW and REAR=NEW

(REAR points to the new node appended to the end of the list)
5 EXIT.

LINK Q-DELETE (INFO, LINK, FRONT, REAR, AVAIL, ITEM)

This Procedure deletes the front element of the linked queue and stores it in item.
1. [Linked queue empty?]
If (FRONT = NULL) then the Write: UNDERFLOW and EXIT.
2. Set TEMP = FRONT(If linked queue is nonempty, remember
FRONT in a temporary variable TEMP)
3. ITEM =INFO(TEMP)
4. FRONT = LINK(TEMP)(Reset front to point to the next element in queue)
5. LINK(TEMP) = AVAIL and AVAIL = TEMP(return deleted node
TEMP to AVAIL list)
6. EXIT.

38

Data Structures and Algorithm 2022

2.12 DEQUES

A deque is a linear list in which elements can be added or removed at either end but not
in the middle. The term deque is a contraction of the name double ended queue. There
are various ways of representing a deque in a computer.

Unless, it is otherwise stated or implied, we will assume our deque is maintained by a
circular array DEQUE with pointers LEFT and RIGHT, which point to the two ends of the
deque. We assume that the elements extend from the left end to the right end in the
array. The term “circular” comes from the fact that we assume that DEQUE[1] comes
after DEQUE[N] in the array. The condition LEFT=NULL will be used to indicate that a
deque is empty.

There are two variations of a deque- namely an input restricted deque and an output
restricted deque—which are intermediate between a deque and a queue.

Specifically, an input restricted deque is a deque which allows insertions at only one
end of the list but allows deletions at both ends of the list; and an output restricted
deque is a deque which allows deletions at only one end of the list but allows insertions
at both ends of the list.

Rear Front
before o c B
Rear Front

dequeue

Queue \

A

0
@

after D

Queue Dequeue

Algorithm for dequeue operation
procedure dequeue
if gueue is empty
return underflow
end if
data = queue[front]
front « front + 1

return true

end procedure

39

Data Structures and Algorithm 2022

Unit: 111

Linked List — Representation of Linked Lists in Memory — Traversing a Linked List —
Insertion into a Linked List — Deletion from a Linked List — Two-way Linked Lists —
Operations on Two-way L.ists.

3.1 A linked list

A linked list or one way list is a linear collection of data elements, called nodes, where the
linear order is given by means of pointers. That is, each node is divided into two parts: the
first part contains the information of the element, and the second part, called the link field
or next pointer field, contains the address of the next node in the list.

Start
Node A NodeN Node B
Tl [
ex

. . . iPainter field of Node N
Single Linked List Information Part of Node N

The null pointer, denoted by X in the diagram, signals the end of the list. The linked list
also contains a list pointer variable—called START or NAME which contains the address
of the first node in the list; hence there is an arrow drawn from START to the first node.
Clearly, we need only this address in START to trace through the list. A special case is the
list that has no nodes. Such a list is called the null list or empty list and is denoted by the
null pointer in the variable START.

Example:

A hospital ward contains 12 beds, of which 9 are occupied.
Suppose we want an alphabetical listing of the patients. This
listing may be given by the pointer field, called Next. we use
the variable START to point to the first patient. Hence START
contains 5, since the first patient. Adams, occupies bed 5. Also,
Adams’s pointer is equal to 3, since Dean, the next patient,
occupies bed 3; Dean’s pointer is 11, since Fields, the next
patient, occupies bed 11; and so on. The entry for the last
patient (Samuels) contains the
nullpointer,denotedby0.(Some8arrows have been drawn to
indicate the listing of the first few patients}

40

Data Structures and Algorithm

2022

3.2 Representation of Linked Lists in Memory
Let LIST be a linked list. Then LIST will be maintained in memory, unless otherwise

specified or implied, as follows. First of all, LIST requires two linear arrays-we will call
them here INFO and LINK — such that INFO[K] and LINK[K] contain, respectively, the
information part and the next pointer filed of anode of LIST. As noted above, LIST also
requires a variable name — such as START --- which contains the location of the
beginning of the list, and a next pointer sentinel—denoted by NULL—which indicates
the end of the list. Since the subscripts of the arrays INFO and LINK will usually be
positive, we will choose NULL=0, unless otherwise stated.

START

INFO Field LINK or NEXT Field

I3 LINEK

:
.I
01060 O W1 & Lyt =
ol (o |ef] | 3
B !))

=

LIH,I < o) I i i [i O s s Rl =
& N N

NULL Value

START =9 == INFO[9] = H is the first character.
LINK[9] =4 => INFO[4] = E is the second character.
LINK[4] = 6 = INFO[6] = L is the third character
NK[6] =2 == INFO[2] = L 1s the fourth character
NK[2] =8 = INFO[8] — O is the fifth character
LINK[S] =0 = The NULL wvalue, so the LIST ends here.
Examplel

Pictures a linked list in a memory where each nodes of the list contains a single character.

START =9, soINFO [9]=N is the first character.

LINK [9] =3, so INFO [3] =0 is the second character.
LINK [3] =6, so INFOQ [6] =(blank) 1s third character.
LINK [6] =11, so INFO [11] =E 1s the fourth character.
LINK [11]=7, so INFO [7] = X 1s the fifth character.
LINK [7]= 10, so INFO [10] = I 1s the sixth character.
LINK [10] =4, s0 INFO [4] =T 1s the seventh character.
LINK [4] =0, the NULL value, so the list has ended.

In other words, NO EXIT 1s the character string.

41

Data Structures and Algorithm 2022

Example2:

Suppose the personnel file of a small company contains
the following data on its nine employees:

Name. Social Security Number, Sex, Monthly salary
Normally, four parallel arrays, say NAME, SSN. SEX|
SALARY, are required to store the data.

3.3 Traversing a Linked list

Let LIST be a linked list in memory stored in linear arrays INFO and LINK with START
pointing to the first element and NULL indicating the end of LIST. Suppose we want to
traverse LIST in order to process each node exactly once.

Traversing algorithm uses a pointer variable PTE which points to the node that 1s currently
being processed. Accordingly LINK[PTR] points to the next node to be processed . Thus the
assignment

PTR=LINK[PTR]
Moves the pointer to the next node in the list.

The details of the algorithm are as follows. Initialize PTR or START. Then process
INEQ[PTR]. the information at the first node. Update PTR by the assignment
PTE =LINK[PTR]. so that PTE points to the second node. Then process [NEQ[PTE]. the
information at the second node. Again update PTR by the assignment PTR.=LINK[PTR], and
then process INFO[PTR], the information at the third node. And so on. Continue until
PTR=NULL, which signals the enH of the list.

42

Data Structures and Algorithm 2022

PTR

-
fsrrannw

START 'INFQ LINK
o— |[op] Ye (X

Fig: PTR : = LINK[PTR]
Algorithm: Traversing a Linked List

Let LIST be a linked list in memory. This algorithm traverses LIST, applyving an operation
PROCESS to each element of LIST. The vaniable PTR points to the node currently being

processed .
. Bet PTR. =START.

1

2. Repeat Steps 3 and 4 while PTR # NULL
3. Wote : INFO[PTR].

4. Set PTR=LINK[PTR]

5. Returmn.

The following procedure finds the number NUM of elements in a linked list.
Procedure: COUNT(INFO LINK START NUM)
1. Set NUM := 0. [initializes counter]
2. Set PTR ;= START.
3. Repeat Steps 4 and 5 while PTR # NULL

4. Set NUM=NUM=+1.
5. Set PTR:=LINK[PTR]

6. Return.

This procedure traverses the linked list in order to count the number of elements.

43

Data Structures and Algorithm 2022

3.4 Insertion into a linked list
Insertion algorithms

Algorithms which insert nodes into linked lists come up in various situations.
e The first one inserts a node at the beginning of the list,

e Second one inserts a node after the node with a given location,

e Third one inserts anode into a sorted list.

All algorithms assume that the linked list is in memory in the form
LIST(INFO,LINK,START,AVAIL) and that the variable ITEM contains
the new information to be added to the list.

Since our insertion algorithms will use a node in the AVAIL list, all of the
algorithms will include the following steps:

(a) Checking to see if space is available in the AVAIL list. If not, that
is, if AVAIL=NULL, then the algorithm will print the message
OVERFLOW.

(b) Removing the first node from the AVAIL list. Using the variable
NEW to keep track of the location of the new node, this step can be
implemented by the pair of assignments.

NEW:=AVAIL, AVAIL:=LINK[AVAIL]
(c) Copying new information into the new

node. In other words, INFO[NEW]:=ITEM

Linked Lists

INFO LINK

START n 1 A 0
2| B 1

AVAIL 7 3| C 2
4| D 3

5 |k 4

6 |k 5

7 8

8 9

9 10

10 0

44

Data Structures and Algorithm 2022

START
Node Node

IE’\IJ--Hl-j—~|—‘|_-—|——~I§A = S o B S

START
(a) Before insertion
Nod Node
AV AIL nsertion
oge MW Node N

f I N 8 o s T = i = o B 3

I Free storage list I

Inserting at the beginning of a list
Suppose our linked list is not necessarily sorted and there is no reason to
insert a new node in any special place in the list. Then the easiest place to
insert the node is at the beginning of the list. An algorithm that does so
follows.

Algorithm: INSFIRST(INFO,LINK,START,AVAIL,ITEM)
This algorithm inserts ITEM as the first node in the list.
1. If AVAIL=NULL, then write OVERFLOW, and exit.
2. Set NEW:=AVAIL and AVAIL:=LINK[AVAIL]
3. Set INFO[NEW]:=ITEM(copies new data into new node)
4, Set LINK[NEW]:=START(New node now points to original first node)
5. Set START:=NEW (changes START so it points to the new node)
6. Exit

A MU

i

S e le =2l |e==] " |a=2]"]|

2
f

Cumrent Node

Inserting after a given node
We are given a pointer to a node, and the new node is inserted after
the given node. Follow the steps to add a node after a given node:

e Firstly, check if the given previous node is NULL or not.

e Then, allocate a new node and

e Assign the data to the new node

e And then make the next of new node as the next of previous node.
¢ Finally, move the next of the previous node as a new node.

45

Data Structures and Algorithm 2022

Algorithm: INSLOC(INFO,LINK,START,AVAIL,LOC,ITEM)
This algorithm inserts ITEM so that ITEM follows the node with

1.
2.
3.
4.

Set LINK [NEW]:=START and START:=NEW

location LOC or inserts ITEM as the first node when LOC=NULL.

If AVAIL=NULL, then write OVERFLOW and exit
Set NEW:=AVAIL and AVAIL:=LINK[AVAIL]
Set INFO[NEW]:=ITEM

If LOC=NULL, then

Else

Set LINK[NEW]:=LINK[LOC] and LINK[LOC]:=NEW
5.

Exit

Head

A

Y \
3| B C 3 D —)NULL

Data

Next T

tmp

Inserting into a sorted linked list

Given a sorted list in increasing order and a single node, insert the node into the list’s correct
sorted position. The function should take an existing node and rearranges pointers to insert
it into the list.

Suppose ITEM is to be inserted into assorted linked LIST. Then ITEM must be inserted
between nodes A and B so that INFO(A) < ITEM < INFO(B)

The following is a procedure which finds the location LOC of node A, that is, which finds
the location LOC of the last node in LIST whose value is less than ITEM.

46

Data Structures and Algorithm 2022

Procedure: FINDA(INFO,LINK.START ITEM,LOC)
This procedure finds the location LOC of the last node in a sorted list such that

INFO[LOC]=ITEM, or sets LOC=NULL.

1. If START=NULL, then Set LOC:=NULL and return

2 If ITEM=INFO[START], then set LOC:=NULL and return

3. Set SAVE=START and PTR.=LINE[START]

4. Repeat steps 5 and 6 while PTR #ZNULL

5.If ITEM=INFO[PTR] then

Set LOC=SAVE and return

6. Set SAVE=PTR and PTR-=LINK[PTE]

7. Set LOC:=SAVE

8. Return

Now we have all the components to present an algorithm which inserts ITEM into a linked
list. The simplicity of the algorithm comes from using the previous two procedures.

Algorithm : INSERT(INFO,LINK.START,AVAIL,ITEM)
This algorithm inserts ITEM into a sorted linked list.
1. Call FINDA(INFO,LINK,START,ITEM,LOC)
2. Call INSLOC(INFO,LINK,START,AVAIL,LOC,ITEM)
3. Exit

Linked List after insertion of 9

2 — S — (¢ —+ 9 [+ 10 — 15

3.5 Deletion from a linked list

You can delete either from the beginning, end or from a particular position.
1. Delete from beginning
e Point head to the second node, ie START will point to second node.

2. Delete from end
e Traverse to second last element
e Change its next pointer to NULL.

3. Delete from middle

e Traverse to element before the element to be deleted
e Change next pointers to exclude the node from the chain

47

Data Structures and Algorithm

Deleting the node following a given node

In order to delete the node, which is present after the specified node, we need to skip the
desired number of nodes to reach the node after which the node will be deleted. We need
to keep track of the two nodes. The one which is to be deleted the other one if the node

which is present before that node.

S%R\T LOCP LOC
\
S e -J\L—f [~ T

|
Node N/

Fig. 5.27 LINK[LOCP] := LINK[LOC]

Algorithm: DEL(INFO,LINK,START,AVAIL,LOC,LOCP)
ThisalgorithmdeletesthenodeNwithlocationLOC.LOCPisthelocationofthe
nodewhich precedes N or, when N is the first node,LOCP=NULL.

1. If LOCP=NULL,thenSet START:=LINK[START]

Else
Set LINK[LOCP]:=LINK[LOC].
2. Set LINK[LOC]:=AVAIL andAVAIL:=LOC

3. Exit.
Deleting the node with a given ITEM of information

Let LIST be a linked list in memory. Suppose we are given an ITEM of information and we
want to delete from the LIST, the first node N which contains ITEM. Recall that before we
can delete N from the list, we need to know the location of the node preceding N. Accordingly,
first we give a procedure which finds the location LOC of the node N containing ITEM and
the location LOCP of the node preceding node N. If N is the first node, we set LOCP=NULL,

and if ITEM does not appear in LIST, we setLOC=NULL.

Procedure: FINDB(INFO,START,ITEM,LOC,LOCP)
This procedure finds the location LOC of the first node N which contains
ITEM and the
locationLOCPofthenodeprecedingN.IfITEMdoesnotappearinthelist,thent

START

o
b\l

[

I

i

e oo oy

Fig. 5.26 START := LINK[START]

48

Data Structures and Algorithm 2022

heprocedure sets LOC=NULL, and if ITEM appears in the first node, then
it setsLOCP=NULL.
1. If START =NULLthen
Set LOC:=NULL and LOCP:=NULL and return.
2. If INFO[START]=ITEM,then
Set LOC:=START and LOCP=NULL and return.
3. Set SAVE:=START andPTR:=LINK[START]
4. Repeat Steps 5 and 6 while PTRANULL
5. If INFO[PTR]=ITEM then
Set LOC:=PTR and LOCP:=SAVE and return.
6. Set SAVE:=PTR andPTR:=LINK[PTR]
7. SetLOC:=NULL
8. Return
Now we can easily present an algorithm to delete the first node N from a
linked list which contains a given ITEM of information.

Algorithm: DELETE(INFO,LINK,START,AVAIL,ITEM)
This algorithm deletes from a linked list the first node N which contains
the given ITEM of information.

1. Call FINDB(INFO,LINK,START,ITEM,LOC,LOCP)
2. If LOC=NULL, then Write ITEM not in list, and exit.
3. If LOCP=NULL then

Set START:=LINK[START]

Else

Set LINK[LOCP]:=LINK[LOC].
4. Set LINK[LOC]:=AVAIL and AVAIL:=LOC
5. Exit

3.6 Two way lists
A two way list is a linear collection of data elements, called nodes, where
each node N is divided into three parts:
e Aninformation field INFO which contains the data of N.
e A pointer field FORW which contains the location of the next node in the list.

¢ A pointer field BACK which contains the location of the preceding node in the
list.

49

Data Structures and Algorithm 2022

FIRST INFO field of node N

BACK pointer field of node N
f FORW pointer fieid of node N

B [T e [T s [T
Node N
w BACK
BED FOR
FIRST e 7 8
1 Kirk
LSRR
> 6
i
LAST 3 | Dean 11 2
n 4 | Maxwell 12 7
Bl e
5 | Adams 3 o
PEaas o AL TR
(0]
AVAIL 8 loaed - Sl
n 7 | Lane 4 1
8 Green 1 11
9 | Samuels [e] 12
10 2
11 Fields 8 3
12 Nelson 9 4

Fig. 5.34

The list also requires two list pointer variables: FIRST, which points to the first node in the list,
and LAST, which points to the last node in the list.

Observe that the null pointer appears in the FORW field of the last node in the list and also in the
BACK field of the first node in the list.

Observe that, using the variable FIRST and the pointer field FORW, we can traverse a two way
list in the forward direction as before. On the other hand, using the variable LAST and the pointer
field BACK, we can also traverse the list in the backward direction.

Suppose LOCA and LOCB are the locations, respectively, of nodes A and B in a two way list.
Then the way that the pointers FORW and BACK are defined gives us the following:

Pointer property: FORW[LOCA]=LOCB if and only if BACK[LOCB]=LOCA
Two way lists may be maintained in memory by means of linear arrays in the same way as one
way lists except that now we require two pointer arrays, FORW and BACK, instead of one pointer

array LINK, and we require two list pointer variables, FIRST and LAST, instead of one list
pointer variable START.

50

Data Structures and Algorithm 2022

Two way Header Lists

The advantages of a two way list and a circular header list may be combined into a two way
circular header list. The list is circular because the two end nodes point back to the header node.
Observe that such a two way list requires only one list pointer variable START, which points to

the header node. This is because the two pointers in the header node point to the two ends of the
list.

3.7 Operations on Two way lists

e Traversing: Visiting each node of the list at least once in order to perform some
specific operation like searching, sorting, display, etc.

e Searching: Comparing each node data with the item to be searched and return the
location of the item in the list if the item found else return null.

e Inserting :For each insertion operation, we need to consider the three cases. These three

cases also need to be considered when removing data from the doubly linked list.

1. Insertion at the beginning
2. Insertion after nth Node

3. Insertion at last

1.Insertion at the Beginning

In the doubly linked list, we would use the following steps to insert a new node at the beginning
of the doubly linked list.

» Create a new node

» Assign its data value

» Assign newly created node’s next ptr to current head reference. So, it points to the
previous start node of the linked list address

» Change the head reference to the new node’s address.
» Change the next node’s previous pointer to new node’s address (head reference)

51

Data Structures and Algorithm 2022

This new node
now points to
older head node

e Deleting : We are given the location LOC of a node N in LISR , and we want to
delete N from the list. BACK [LOCK] and FORW [LOC] are the locations.
FORW[BACKI[LOC]]=FORWILOC] and BACK[FORWI[LOC]]=BACK[LOC].

i“"-’év Q_
N E R G Lf’f’ﬁ’f”‘ D El

Algorithm

DELTWL (INFO, FORW, BACK, START, AVAIL, LOC)
1. [Delete node.]

Set FORW[BACKI[LOC]]=FORWI[LOC] and BACK[FORWI[LOC]]=-BACKILOC].
2.[Return node to AVAIL list]
Set FORW[LOC]=AVAIL and AVAIL=LOC

3. Exit

52

Data Structures and Algorithm 2022

Unit: IV

Trees - Binary Trees — Representing Binary Trees in Memory — Traversing
Binary Tree — Threads —Binary Search Tree — Graph Theory — Terminology
— Sequential Representation of Graph: Adjacency Matrix, Path Matrix —
Traversing a Graph, Breadth First Search, Depth First Search.

TREES AND BINARY TREES
INTRODUCTION

In linear data structure data is organized in sequential order and in non-linear data structure data is
organized in random order. A tree is a very popular non-linear data structure used in a wide range of
applications. Tree is a non-linear data structure which organizes data in hierarchical structure and this
is a recursive definition.

DEFINITION OF TREE:

Tree is collection of nodes (or) vertices and their edges (or) links. In tree data structure, every
individual element is called as Node. Node in a tree data structure stores the actual data of that
particular element and link to next element in hierarchical structure.

@ easssssm NODE
\ TREE with 11 nodes and 10 edges

,\ @ In any tree with ‘N’ nodes there

£ will be maximum of ‘N-1" edges
@ \ @ @ ® - In a tree every individual
s EDGE element is called as ‘NODE’

Q0 ©

SIMPLE TREE 'T'
Note: 1. In a Tree, if we have N number of nodes then we can have a maximum

of N-1 number of links or edges.
2. Tree has no cycles.

53

Data Structures and Algorithm 2022

4.1 BINARY TREE:

In a normal tree, every node can have any number of children. A binary tree is a special type of
tree data structure in which every node can have a maximum of 2 children. One is known as a
left child and the other is known as right child.

A tree in which every node can have a maximum of two children is called Binary
Tree. In a binary tree, every node can have either 0 children or 1 child or 2
children butnot more than 2 children.

In general, tree nodes can have anv number of children. In a binarv tree_ each node can have
at most two children. A binary tree 15 either empty or consists of a node called the root
together with two binary trees called the left subtree and the right subtree. A tree with no
nodes 1z called as a null tree

Example:

right subtree
|eft subtree

, Binary Tree

TREE TERMINOLOGIES:

1. Root Node: In a Tree data structure, the first node is called as Root Node. Every tree
must have a root node. We can say that the root node is the origin of the tree data structure.
In any tree, there must be only one root node. We never have multiple root nodes in a tree.

@ —— ROOT NODE
/S f. 3

N Here ‘A’ is the ‘root’ node

_ © - In any tree the first node is
\ called as ROOT node

©OO6 O

SIMPLE TREE 'T'

54

Data Structures and Algorithm 2022

2. Edge: In a Tree, the connecting link between any two nodes is called
as EDGE. In a tree with 'N' number of nodes there will be a maximum
of 'N-1' number of edges.

- In any tree, ‘Edge’ is a connecting
link between two nodes.

3. Parent Node: In a Tree, the node which is a predecessor of any node is called as
PARENT NODE. In simple words, the node which has a branch from it to any other
node is called a parent node. Parent node can also be defined as "The node which
has child / children

(&)
e G - In any tree the node which has
(E)

Here A, B, C, E & G are Parent nodes

child / children is called ‘Parent’

@ - A node which is predecessor of
any other node is called ‘Parent’

Here, A is parent of B&C. B is the parent of D,E&F and so on...

4. Child Node: Ina Tree data structure, the no de which is descendant of any node
is called as CHILD Node. In simple words, the node which has a link from its parent
node is called as child node. In a tree, any parent node can have any number of child
nodes. In atree, all the nodes except root are child nodes.

0 Here B & C are Children of A
Here G & H are Children of C

(B) (C) Here K is Child of G
- descendant of any node is called
0 e o @ 0 as CHILD Node
O QO ®

55

Data Structures and Algorithm 2022

5. Siblings: In a Tree data structure, nodes which belong to same
Parent are called as SIBLINGS. In simple words, the nodes with the
same parent are called Sibling nodes.

Here are Siblings
Here D E & F are Siblings
Here are Siblings
Here are Siblings

- In any tree the nodes which has
same Parent are called ‘Siblings’

- The children of a Parent are
called ‘Siblings’

Leaf Node: In a Tree data structure, the node which does not have a child 1z called as
LEAF Node. In simple words, a leaf i1s a node with no child. In a tree data structure, the leaf
nodes are also called as External Nodes. External node 15 also a node with no child. In a tree, leaf
node 15 also called as "Terminal node.

Here D, |, J, F, K & H are Leaf nodes

- In any tree the node which does
not have children is called ‘Leaf’

@ ® ® - A node without successors is
called a ‘leaf’ node

6. Internal Nodes: In a Tree data structure, the node which has at least one child is called as
INTERNAL Node. In simple words, an internal node is a node with at least one child.

In a Tree data structure, nodes other than leaf nodes are called as Internal Nodes. The root node
is also said to be Internal Node if the tree has more than one node. Internal nodes are also called
as 'Non-Terminal' nodes.

0 Here A, B, C, E & G are Internal nodes

- In any tree the node which has atleast
0 0 one child is called ‘Internal’ node

- Every non-leaf node is called

e @ as ‘Internal’ node

56

Data Structures and Algorithm 2022

7. Degree: In a Tree data structure, the total number of children of a node is called as
DEGREE of that Node. In simple words, the Degree of a node is total number of children it
has. The highest degree of a node among all the nodes in a tree is called as 'Degree of Tree'

0 Here Degree of Bis 3
Here Degree of Ais 2

e G Here Degree of Fis 0

- In any tree, ‘Degree’ of a node is total

(b) () (F) () (7 number of children it has.
O QO ®

Degree of Tree is: 3

8.Level: In a Tree data structure, the root node is said to be at Level 0 and the children of root
node are at Level 1 and the children of the nodes which are at Level 1 will be at Level 2 and so

on... In simple words, in a tree each step from top to bottom is called as alLevel andthe Level
count starts with '0" and incremented by one at each level (Step).

(A) Level 0

(B) C) Level 1
OO @ Level 2
o NO G Level 3

9.Height: In a Tree data structure, the total number of edges from leaf node to a particular node
in the longest path is called as HEIGHT of that Node. In a tree, height of the root node is said to
be height of the tree. In a tree, height of all leaf nodes is '0'".

Here Height of tree is 3

- In any tree, ‘Height of Node’ is
total number of Edges from leaf
to that node in longest path.

- In any tree, ‘Height of Tree’ is

Height is 0 the height of the root node.

57

Data Structures and Algorithm 2022

10. Depth: In a Tree data structure, the total number of egdes from root node to a
particular node is called as DEPTH of that Node. In a tree, the total number of
edges from root node to a leaf node in the longest path 1s said to be Depth of the
tree. In simple words, the highest depth of any leaf node in a tree is said to be
depth of that tree. In a tree, depth of the root node is '0".

Here Depth of tree is 3

- In any tree, ‘Depth of Node' is
total number of Edges from root
to that node.

- In any tree, ‘Depth of Tree’ is
total number of edges from root
to leaf in the longest path.

De;nh is3

11.Path: Ina Tree data structure, the sequence of Nodes and Edges from one node to another
node is called as PATH between that two Nodes. Length of a Path is total number of nodes
in that path. In below example the path A - B - E - Jhas length 4.

Q - In any tree, ‘Path’ is a sequence
of nodes and edges between two
e e nodes.
Here, ‘Path’ between A & J is
O O @ e
Here, ‘Path’ between C & K is
: C-G-K

12.Sub Tree: In a Tree data structure, each child from a node forms a subtree recursively.
Every child node will form a subtree on its parent node.

Subtree
Subtree

58

Data Structures and Algorithm 2022

TYPES OF BINARY TREE:

1. Complete Binary Tree:

In a binary tree, every node can have a maximum of two children. But in strictly binary tree,
every node should have exactly two children or none and in complete binary tree all the nodes
must have exactly two children and at every level of complete binary tree there must be 2'¢v®!

number of nodes. For example at level 2 there must be 22 = 4 nodes and at level 3 there must
be 2% = 8 nodes

A binary tree in which every internal node has exactly two children and all leaf nodes are
at same level is called Complete Binary Tree.

Complete binary tree is also called as Perfect Binary Tree.

Level O

Level 1
Level 2

.. Level 3

Fig. Complete Binary Tree

2.Extended Binary Tree:
A binary tree can be converted into Full Binary tree by adding dummy
nodesto existing nodes wherever required.

The full binary tree obtained by adding dummy nodes to a binary tree is called as
Extended Binary Tree.

® ®
©._ Q)
® @ ® ® & © ®
® e W) ® O

In above figure, a normal binary tree is converted into full binary tree by adding dummy
nodes.

Properties of binary trees:
Some of the important properties of a binary tree are as follows:
1. If h = height of a binary tree, then
a. Maximum number of leaves = 2h
b. Maximum number of nodes =2h+1-1
2. If a binary tree contains m nodes at level 1, 1t contains at most 2m nodes at level 1+ 1.

3. Since a binary tree can contain at most one node at level 0 (the root), it can
contain atmost 21 node at level 1.

4. The total number of edges in a full binary tree with n node 1s n —1.

59

Data Structures and Algorithm

2022

4.2 BINARY TREE REPRESENTATIONS:

A binary tree data structure is represented using two
methods. Thosemethods are asfollows...

1. Array Representation
2. Linked List Representation
Consider the following binary tree.

PO
©
® 06 ®
®© O ®
1.Array Representation of Binary Tree

In array representation of a binary tree, we use one-dimensional array (1-DArray) to
represent a binary tree.

Consider the above example of a binary tree and it is represented as follows...

ey

TREE

| ss |

/ s
11\ 70 70 11

b)
@ ()

To represent a binary tree of depth 'n* using array representation, we need one
dimensional array with a maximum size of 2" *1,

2.Linked List Representation of Binary Tree

We use a double linked list to represent a binary tree. In a double linked list,every node consists
of three fields.

o First field for storing left child address.

o second for storing actual data and third for the right child address.
o Inthis linked list representation, a node has the following structure

Left Child Right Child
Address Data ddress

60

Data Structures and Algorithm 2022

The above example of the binary tree represented using Linked list representationis shown as
follows

-

i

olnfolw|ofal=|w|ol=|n|o|olo
-
o

-

14 | H [208-56-1654 | | Female | 22 800 7
Fig. 7.8

ewis

Brown \
/}een Kelly Rubin

4.3 BINARY TREE TRAVERSALS:

Unlike linear data structures (Array, Linked List, Queues, Stacks, etc) which have only one logical
way to traverse them, binary trees can be traversed in different ways. Following are the generally
used ways for traversing binary trees.

When we wanted to display a binary tree, we need to follow some order in which all the nodes of
that binary tree must be displayed. In any binary tree, displaying order of nodes depends on the

traversal method.
Displaying (or) visiting order of nodes in a binary tree is called as Binary Tree Traversal.

There are three types of binary tree traversals.
1. In - Order Traversal
2. Pre- Order Traversal
3. Post- Order Traversal

1. In - Order Traversal (left Child - root - right Child):

In In-Order traversal, the root node is visited between the left child and right child.In this
traversal, the left child node is visited first, then the root node is visited and later we go for
visiting the right child node. This in-order traversal is applicable for every root node of all sub
trees in the tree. This is performed recursively for all nodes in the tree.

Step-1: Visit the left

subtree, using inorder.

Step-2: Visit the root.

Step-3: Visit the right subtree, using inorder.

61

Data Structures and Algorithm 2022

®
©
©@ 0@ @
ONO ®

In the above example of a binary tree, first we try to visit left child of root node 'A’, but A's
left child 'B' is a root node for left subtree. so we try to visit its (B's) left child 'D' and again
D is aroot for subtree with nodes D, I and J. So we try to visit its left child 'I' and it is the
leftmost child. So first we visit 'I" then go for its root node ‘D" and later we visit D's right
child 'J'. With this we have completed the left part of node B. Then visit '‘B" and next B's
right child "F" is visited. With this we have completed left part of node A. Then visit root
node "A’. With this we have completed left and root parts of node A. Then we go for the
right part of the node

A. In right of A again there is a subtree with root C. So go for left child of C and again it is
a subtree with root G. But G does not have left part so we visit 'G" and then visit G's right
child K. With this we have completed the left part of node C. Then visit root node 'C" and
next visit C's right child "H" which is the rightmost child in the tree. So we stop the process.

That means here we have visited inthe orderof | -D-J-B-F-A-G-K-C-H

using In- Order Traversal.
2.Pre - Order Traversal (root - leftChild - rightChild):

In Pre-Order traversal, the root node is visited before the left child and right child nodes. In
this traversal, the root node is visited first, then its left child and later its right child. This
pre-order traversal is applicable for every root node of all subtreesin the tree. Preorder search
is also called backtracking

Algorithm:

Step-1: Visit the root.

Step-2: Visit the left subtree, usingpreorder.
Step-3: Visit the right subtree, using preorder

® O
® 0O @
OO0 ®

62

Data Structures and Algorithm 2022

In the above example of binary tree, first we visit root node "A’then visit its left
child *B* which is a root for D and F. So we visit B's left child ‘D" and again D is a root
for I and J. So we visit D's left child 'I' which is the leftmost child. So next we go for
visiting D's right child *J". With this we have completed root, left and right parts of node
D and root, left parts of node B. Next visit B's right child 'F'. With this we have completed
root and left parts of node A. So we go for A's right child *C* which is a root node for G
and H. After visiting C, we go for its left child 'G" which is a root for node K. So next we
visit left of G, but it does not have left child so we go for G's right child "K". With this, we
have completed node C's root and left parts. Next visit C's right child "H" which is the
rightmost child in the tree. So we stop the process.

That means here we have visited in the order of A-B-D-1-J-F-C-G-K-H

using Pre- Order Traversal.

3.Post - Order Traversal (left Child - right Child - root):

In Post-Order traversal, the root node is visited after left child and right child.In this
traversal, left child node is visited first, then its right child and then itsroot node. This
is recursively performed until the right most nodes are visited.Algorithm:
Step-1: Visit the left subtree, using post order.
Step-2: Visit the right subtree, using post order
Step-3: Visitthe root.

®

©
® 600 ®
ONO ®

Here we have visited in the orderof 1 -J-D-F-B-K-G-H-C-A

using Post-OrderTraversal
Example 1:

Traverse the following binary tree in pre, post, inorder and level order.

* Preordertraversal yields:
A,B,D,C,E,G,F, H, 1

e Postorder traversal yields:
D.B,G,.E,H.I,F,C, A

e Inordertraversal yields:
D,B,A,E,G,C,H, F, 1

Binary Tree Pre, Post, Inorder and level order Traversing

63

Data Structures and Algorithm 2022

Example 2:

Traverse the following binary tree in pre, post, inorder and level order.

* Preordertraversal yields:
P,F,B,H,G,S,R,Y, T.W, 2

* Postordertraversal yields:
B,G,H,F,R, W, T, 2,VY,S8,P

* Inordertraversal yvields:
B,F,G,H,P,R, S5, T, W, VY, 2

Binary Tree Pre, Post, Inorder and level order Traversing

4.4 HEADER NODES:THREADS

Ina binary search tree, there are many nodes that have an empty left childor empty right
child or both.

You can utilize these fields in such a way so that the empty left child of anode points to
its in order predecessor and empty right child of the node points to its inorder successor.

One way threading:- Athread will appear in a right field of a node andwill point to the
next node in the inorder traversal.

Two way threading:- A thread will also appear in the leftfield of a nodeand will point
to the preceding node in the inorder traversal.

Defining Threaded Binary Trees

o Consider the following binary search tree.

o Most of the nodes in this tree hold a NULL value in their left or right child
fields.

o In this case, it would be good if these NULL fields are utilized for some
other useful purpose.

64

Data Structures and Algorithm 2022

One Way Threaded Binary Trees

o The empty left child field of a node can be used to point to its
in order predecessor.

o Similarly, the empty right child field of a node can be used to point to its in-
order Such a type of binary tree is known as a one way threaded binary tree.

o A field that holds the address of its in-order successor is known as
thread. In-order :- 30 40 50 60 65 69 72 80

Two way Threaded Binary Trees

o Such atype of binary tree is known as a threaded binary tree.
o A field that holds the address of its inorder successor or predecessor is known as thread.
The empty left child field of a node can be used to point to its inorder predecessor.

o Similarly, the empty right child field of a node can be used to point to its inorder successor.
Inorder :- 30 40 50 60 65 69 72 80

65

Data Structures and Algorithm 2022

Node 30 does not have an inorder predecessor because itis the first node to be traversed
ininorder sequence

Similarly, node 80 does not have an inorder successor.

Two way Threaded Binary Trees with header Node
The right child of the header node always points to itself.
Therefore, you take a dummy node called the header node.

Header MNMode

The threaded binary tree is represented as the left child of the header node.

Headeaer MNode

% The left thread of node 30 and the right thread of node 80
point to the header node. Header MNode

Data Structures and Algorithm 2022

4.5 BINARY SEARCH TREES

A binary search tree (BST) is a tree in which all nodes follows the below mentioned
properties:

o The left sub-tree of a node has key less than or equal to its parent node's key.
o The right sub-tree of a node has key greater than or equal to its parent node's key.

Thus, a binary search tree (BST) divides all its sub-trees into two

segments; left sub-tree and right sub-tree and can be defined as—

left_subtree (keys) < node (key) < right_subtree (keys)

BST is a collection of nodes arranged in a way where they maintain BST properties. Each
node has key and associated value. While searching, the desired key is compared to the

keys in BST and if found, the associated value is retrieved. An example of BST —

| 14 35)
31 42
__7 __“/ __/ o/

We observe that the root node key (27) has all less-valued keys on the left sub-tree and
higher valued keys on the right sub-tree.

4.6 GRAPH

A graph is defined as Graph is a collection of vertices and arcs which connects vertices in the graph. A
graph G isrepresented as G = (V, E), where V is set of vertices and E is set of edges.

Example: graph G can be definedas G = (V, E) Where V = {A,B,C,D,E} and

E = {(AB),(A,C)(AD),B,D),(C,D),(B,E),(E,D)}. This is a graph with 5 vertices and 6 edges.

vemcei Q‘e L Edge

© O

67

Data Structures and Algorithm 2022

Graph Terminology

1. Vertex : An individual data element of a graph is called as Vertex. Vertex is also known as
node. In above example graph, A, B, C, D & E are known as vertices.

2. Edge : An edge is a connecting link between two vertices. Edge is also known as Arc. An
edge isrepresented as(starting Vertex, ending Vertex). In above graph, the link between
vertices A and B isrepresented as (A,B).

Types of Graphs

1.Undirected Graph

A graph with only undirected edges is said to be undirected graph.

Undirected SGraph.

2.Directed Graph

A graph with only directed edges is said to be directed graph.

NN

Directed Graph.

3.Complete Graph

A graph in which any V node is adjacent to all other nodes present in the graph is
known as a complete graph. An undirected graph contains the edges that are equal to
edges = n(n-1)/2 where n is the number of vertices present in the graph. The following
figure shows a complete graph.

A complete graph.

68

Data Structures and Algorithm 2022

4.Weighted Graph

A graph is said to be weighted if there are some non negative value
assigned to each edges of the graph. Thevalue is equal to the length between
two vertices. Weighted graph is also called a network.

W i
o

Aoeveighted graph

Outgoing Edge
A directed edge is said to be outgoing edge on its orign vertex.

Incoming Edge
A directed edge is said to be incoming edge on its destination vertex.

Degree
Total number of edges connected to a vertex is said to be degree of that vertex.

Indegree

Total number of incoming edges connected to a vertex is said to be indegree of that
vertex.

Outdegree
Total number of outgoing edges connected to a vertex is said to be outdegree of that vertex.

Self-loop
An edge (undirected or directed) is a self-loop if its two endpoints coincide.

Adjacent nodes
When there is an edge from one node to another then these nodes are called adjacent nodes.

Incidence
In an undirected graph the edge between v1 and v2 is incident on node v1 and v2.

69

Data Structures and Algorithm 2022

Sub Graph
A graph S is said to be a sub graph of a graph G if all the vertices and all the
edges of S are in G, and eachedge ofS has the same end vertices in Sas in G. A
subgraph of G is a graph G’ such that V(G’) [J V(G) and E(G’) [J E(G)

(5 >
(o) D
e o b W ol

Connected Graph

A graph G is said to be connected if there is at least one path between every pair of
vertices in G. Otherwise, G is disconnected.

A connected graph G A disconnected graph G

o
(2 OIRC)
a3 el
) ~ ()
23 @ a2 E

This graph is disconnected because the vertex v1 is not connected with the other vertices
of the graph.

4. 7SEQUENTIAL REPRESENTATION OF GRAPHS;
ADJACENCY MARTIX;PATH MATRIX

1.Adjacency Matrix

In this representation, graph can be represented using a matrix of size total number of vertices by
totalnumber ofvertices; means if a graph with 4 vertices can be represented using a matrix of 4X4
size.

In this matrix, rows and columns both represent vertices.
This matrix is filled with either 1 or 0. Here, 1 represents there is an edge from row vertex to
columnvertex and Orepresents there is no edge from row vertex to column vertex.

70

Data Structures and Algorithm 2022

Adjacency Matrix : let G = (V, E) with n vertices, n [J 1. The adjacency matrix of G is a 2-
dimensional n [0 nmatrix, A, A(i, j) = 1 iff (vi, vj)) DE(G) (Ovi, v;[J for a diagraph), A(i,)0
otherwise.

example : for undirected graph

A B C D E
"
0 1 T T 0
1 0 0o 1 1
r U 9 T 0
i T & 4 &
0 1 0 1 o
J
A B C D E
i)
0 1.1 0 0
0 0 0 1 1
O 0 0 1 O
1 0 0 1 1
0O 0 0 0 O
\ J

The adjacency matrix for an undirected graph is symmetric; the adjacency matrix
for a digraph neednot be symmetric.
2. Path Matrix in Graph Theory

Graph Theory is dependent on vertex (node) and edge (path) relationship. So, each and every
processneeds path matrix in graph theory. To find a path between two vertex or node path matrix
is the most easiest way. If you have a path matrix defined for a graph you can say whether a node
can be traveledfrom another specific node.

Below is a real life Data Structure example of Path Matrix in Graph Theory.

Istanbul New Delhi Ist Isl ND Kol &n
b 4 9 0 7]
st 1 1 1
Jowf1 1011
o |1 1 1 1
Islamabad Kolkata T
Graph m Path Matrix

This graph defines train routes among India, Pakistan and Turkey.

So, We can answer the following answer from the path matrix of the graph.
Is there a train route between New Delhi and Istanbul?Ans: Yes.

Is there a train route between Kolkata and Istanbul?Ans: Yes.

Is there a train route between Islamabad and Kolkata?Ans: Yes.

And that is how path matrix works.

71

Data Structures and Algorithm 2022

4.8 TRAVERSING A GRAPH

Graph traversal is a technique used for searching a vertex in a graph. The graph traversal
is also used todecide the order of vertices is visited in the search process. A graph traversal
finds the edges to be usedin the search process without creating loops. That means using
graph traversal we visit all the vertices of the graph without getting into looping path.

There are two graph traversal techniques and they are as follows...
1. BFS (Breadth First Search)
2. DFS (Depth First Search)

1. BFS (Breadth First Search)

BFS traversal of a graph produces a spanning tree as final result. Spanning Tree is a
graph withoutloops. We use Queue data structure with maximum size of total number
of vertices in the graph toimplement BFS traversal.

We use the following steps to implement BFS traversal...

Step 1 - Define a Queue of size total number of vertices in the graph.

Step 2 - Select any vertex as starting point for traversal. Visit that vertex and insert it
into the Queue. Step 3 - Visit all the non-visited adjacent vertices of the vertex which
is at front of the Queue and insertthem into the Queue.

Step 4 - When there is no new vertex to be visited from the vertex which is at front of
the Queue thendelete that vertex.

Step 5 - Repeat steps 3 and 4 until queue becomes empty.

Step 6 - When queue becomes empty, then produce final spanning tree by removing
unused edges fromthe graph

Example of BFS algorithm

Now, let's understand the working of BFS algorithm by using an example.
In the example given below,there is a directed graph having 7 vertices.

Adjacency Lists
N N
> Ldl
A:B,D
B:CF
C:EG

G:E
:B,F

b4
y %
o mm
m>m

In the above graph, minimum path P’ can be found by using the BES that will start from Node A and end
at Node E. The algorithm uses two queues, namely QUEUEL and QUEUE2. QUEUE] holds all the

72

Data Structures and Algorithm 2022

nodes that are to be processed, while QUEUE2 holds all the nodes that are processed and
deleted fromQUEUEL1.

Now, let's start examining the graph starting from Node A.

Step 1 - First, add A to queuel and NULL to queue2.
1. QUEUE1 = {A}
2. QUEUE2 = {NULL}

Step 2 - Now, delete node A from queuel and add it into queue2. Insert all
neighbors of node A toqueuel.

1. QUEUE1 ={B, D}

2. QUEUE2 = {A}

Step 3 - Now, delete node B from queuel and add it into queue2. Insert all
neighbors of node B toqueuel.

1.QUEUEL = {D, C, F}
2. QUEUE2 = {A, B}

Step 4 - Now, delete node D from queuel and add it into queue2. Insert all
neighbors of node D to queuel.The only neighbor of Node D is F since it is
already inserted, so it will not be inserted again.

1. QUEUE1={C,F}

2. QUEUE2={A, B, D}

Step 5 - Delete node C from queuel and add it into queue2. Insert all neighbors of
node C to queuel.

1. QUEUELl={E, G}

2. QUEUE2={A, B,D,C,F}
Step 6 - Delete node E from queuel. Since all of its neighbors have already been
added, so we will notinsert them again. Now, all the nodes are visited, and the target
node E is encountered into queue2.

1. QUEUEL ={G}
2. QUEUE2={A, B,D,C,F, E}

73

Data Structures and Algorithm 2022

2.DFS algorithm

DFS algorithm in the data structure. It is a recursive algorithm to search all the
vertices of a tree data structure or a graph. The depth-first search (DFS) algorithm
starts with the initial node of graph G and goes deeper until we find the goal node
or the node with no children.

Algorithm
Step 1: SET STATUS =1 (ready state) for each node in G
Step 2: Push the starting node A on the stack and set its STATUS = 2 (waiting state)
Step 3: Repeat Steps 4 and 5 until STACK is empty
Step 4: Pop the top node N. Process it and set its STATUS = 3 (processed state)

Step 5: Push on the stack all the neighbors of N that are in the ready state
(whose STATUS = 1) and settheir STATUS = 2 (waiting state)

[END OF LOOP]

Step 6: EXIT

In the example given below, there is a directed graph having 7 vertices.

Adjacency Lists

A:B.D

nmIom
T

IOTMOOD
>pm>@mmmO

Now, let's start examining the graph starting from Node H.

Step 1 - First, push H onto the stack.

1 STACK: H

Step 2 - POP the top element from the stack, i.e., H, and print it. Now, PUSH all
the neighbors of H onto thestack that are in ready state.

1. Print. H

2. STACK: A

74

Data Structures and Algorithm 2022

Step 3 - POP the top element from the stack, i.e., A, and print it. Now, PUSH all the
neighbors of A onto thestack that are in ready state.

. Print: A
. STACK:B,D

Step 4 - POP the top element from the stack, i.e., D, and print it. Now, PUSH all the
neighbors of D onto thestack that are in ready state.

. Print: D

. STACK:B, F

Step 5 - POP the top element from the stack, i.e., F, and print it. Now, PUSH all
the neighbors of F onto thestack that are in ready state.

. Print: F

. STACK: B

Step 6 - POP the top element from the stack, i.e., B, and print it. Now, PUSH all
the neighbors of B onto thestack that are in ready state.

. Print: B

. STACK:C

Step 7 - POP the top element from the stack, i.e., C, and print it. Now, PUSH all
the neighbors of C onto thestack that are in ready state.

. Print: C
. STACK:E, G

Step 8 - POP the top element from the stack, i.e., G and PUSH all the neighbors of
G onto the stack that arein ready state.

. Print: G
. STACK:E

Step 9 - POP the top element from the stack, i.e., E and PUSH all the neighbors of
E onto the stack that arein ready state.

. Print: E
. STACK:

Now, all the graph nodes have been traversed, and the stack is empty.

75

Data Structures and Algorithm 2022

Unit: V

Sorting and Searching : Sorting- Bubble sort, Insertion, Selection, Merge sort , Quick
sort, Heap sort Searching: Liner search, Binary search.

Sorting
Sorting is the process of arranging the elements in the ascending or descending order.

The default sorting is ascending order.
There are two types of sorting namely

1. External Sorting
2. Internal Sorting

External Sorting: Itis used to handle massive amount of data for sorting. It is requied when
the data is being sorted do not fit into the main memory of a computing device(usually main
memory).

Merge sort (2 way merge sort is an example)

Internal Sorting: It is the type of sorting occur within a main memory. Internal sorting
algorithm types are as follows

Bubble sort
Insertion sort
Selection sort
Merge sort
Quick sort
Heap sort

o g wh e

Bubble sort: in this the adjacent or adjoining values are compared and exchanged if they
are not in the proper order. This process is repeated until the entire array is sorted.

Example: Consider the following numbers to be sort using bubble sort method
5122106
Pass 1

1. Compare 5 and 12 [No change]

76

Data Structures and Algorithm

2022

2. Compare 12 and 2 [Since 2 is smaller than 12 apply swap]

4. Compare 12 and 6 apply swap

Pass 2

5

2

10

6

12

1. Compare 5 and 2 ,apply swap

5

2

I

10

6

12

2

5

10

6

12

2. Compare 5 and 10 ,No change

2

5

10

6

12

77

Data Structures and Algorithm

2022

3.

4.

Compare 10 and 6 apply swap

2
5

2
5

10 I 6

6 10
12

12

Compare 10 and 12, No change

2
5
6

10
12

Now we can find all the elements are sorted in the ascending order using bubble sort .

Bubble Sort Algorithm

o

akrwbdPE

Start
Read n [No .of elements]
Read data[] [No of elements]
Repeat steps 5,6 and 7 until 1 to n-1
Initially in a pass assume no interchange
Interchange<FALSE
Repeat steps 7 8 9
If data[i]>data[i+1] then
a. data[i]=data[i+1]
b. interchange< TRUE

/I End of step 6

if(interchange==FALSE) then return
/lend of step 4
end

78

Data Structures and Algorithm 2022

Insertion sort

the previously sorted array.

In this each successive element is picked and inserted at an appropriate position in

Example: Consider the following numbers to be sort using insertion sort method

4070102060 90
Process Sorted Array Unsorted Array
Passl | mememeeee- 40 70 10 20 60 90
Pass2 40[Trivially sorted] 70 10 20 60 90
Pass3 40 70 10 20 60 90
Pass4 10 40 70 20 60 90
Pass5 10204070 60 90
Pass6 1020406070 90
Pass7 102040607090 | -------

Sorted Array contains ascending order as follows

| 10

| 20 | 40 | 60 | 70

Insertion Sort Algorithm

1.
2.
3.

o

Start
A[0]=minimum integer value /* Now start sorting the array*/
Repeat steps 4 through 9 for k=1,2,3....N-1
{
Temp=A[K]
ptr=k-1

Repeat steps 7 to 8 while temp<A[ptr]
{

A[ptr+1]=A[ptr] //Moves element forward

ptr=ptr-1
}
Alptr+1]=temp
}

10. End

79

Data Structures and Algorithm 2022

INSERTION SORT:

All
-0 40 70 10 20 60 90
0 1 2 3 4 5 6
Pass-1

K=2, temp=70,ptr=1
70<40->false

Then A[2]=70

Pass-2

K=3, temp=10,ptr=2
10<70->true

Then swap—>A[3]=70,ptr=1
10<40->true

swap—->A[2]=40,ptr=0
10<-c0—>false

Then A[1]=10

| 10 | 40 | 70 | 20 | 60 | 90

Pass-3

K=4, temp=20,ptr=3
20<70->true

Then swap—>A[4]=70,ptr=2
20<40->true

Again swap—>A[3]=40,ptr=1
20<10->false

Then A[2]=20

| 10 | 20 | 40 | 70 | 60 | 90

80

Data Structures and Algorithm 2022

Pass-4
K=5, temp=60,ptr=4
60<70->true

Then swap—>A[5]=70,ptr=3
60<40->false

Then A[4]=60

Pass-5

K=6, temp=90,ptr=5
90<70->false

Then A[6]=90

Final sorted values are

| 10 | 20 | 40 | 60 | 70 [90

Selection Sort

In this the smallest or largest key from the remaining unsorted array us searched
for and put in the sorted array.

Example: Consider the following numbers to be sort using insertion sort method

407010 20 60 90
Process Sorted Array Unsorted Array
Passl | e 40 70 10 20 60 90
Pass2 10 40 70 20 60 90
Pass3 10 20 40 70 60 90
Pass4 10 20 40 70 60 90
Pass5 10 20 40 60 7090
Pass6 10 20 40 60 90 90
Pass7 10 20 40 60 90

In the above table in the unsorted array smallest element is picked and placed in the sorted
array one by one for ascending order. For descending order largest element should be picked.

81

Data Structures and Algorithm 2022

Selection Sort Algorithm
1.Repeat steps 2&3 for K=1,2,3,...... N-1
2.Call MIN(A,K,N,LOC)
3. Temp=A[k],A[K]=A[LOC],A[LOC]=Temp
[End of loop]
4. Exit
MIN(A,K,NLOC)
1.MIN:=A[K],LOC=K
2.Repeat for J=k+1,k+2,...... N
If MIN>A[J] then MIN=A[J] and LOC=J
[end loop]

3.Return

Pass-1

K=1,

MIN=40 LOC=1 J=2
40>70 false

J=3

40>10-> True
MIN=10 and LOC=3
J=4->10>20->false
J=5->10>60->false

J=6>10>90~>false

| 10 | 40 | 70 | 20 | 60 | 90

82

Data Structures and Algorithm 2022

Pass-2

K=2 MIN=40,LOC=2
J=3->40>70->false
MIN=40 LOC=3
J=4->40>20>True
MIN=20 LOC=4
J=5->20>60->false

J=6->20>90~>false

| 10 | 20 | 40 | 70 | 60 | 90

Pass-3

K=3 MIN=40,LOC=3
J=4->40>70->false
J=5->40>60->false

J=6->40>90~>false

0 | 20 | 40 | 70 | 60 | 90

Pass-4
K=4 MIN=70,LOC=4
J=5->70>60->true
MIN=60,LOC=5

J=6->60>90>false

| 10 | 20 | 40 | 60 | 70 [90

Pass-5
K=5 MIN=70,LOC=5

J=6>70>90~>false

| 10 | 20 | 40 | 60 | 70 | 90

83

Data Structures and Algorithm 2022

Quick Sort:- 1t is also called as partition exchange sort. In this we should place pivot
element in the correct position [middle] and partition the remaining into two sets.
One set contains the number less than pivot element and other with greater.

Example: Consider the following list of numbers
35 26 10 13 45 92 30 60
Here 35 is the pivot element, so it should be placed at center

LEFT PARTITION PIVOT VALUE RIGHT PARTITION

26 10 13 30 35 45 92 60
26 10 13 30 35 | | 45 6Q 92
10 13 26 || 30 || 35 || 45 60 || 92
10 13 | |26 || 30 || 35 |]|45 || 60 92
10 13 || 26 30 35 45 60 92

In the above diagram the following points should be observed

e Left partition contains the numbers less than pivot element. The
partition may not be sorted.

¢ Right partition contains the numbers greater than pivot element. The
partition may not be sorted.

e In the left partition the bigger number is removed and placed before
the pivot element.

e Intheright partition the bigger number is removed and placed at the
last

e In each steps both numbers from left and right partition is taken and
placed.

o Finally we will get the sorted elements.

84

Data Structures and Algorithm 2022

Quick Sort Algorithm:- [QuickSort(data[],start,end)]

. low<Start
. high&<End

1
2
3. elt<data[Low]
4. While(low<high)
a. While(data[low]<=elt && (low<high)
low<low+1
While(data[high] >=elt &&(low<high)
b. high<high+1
c. if low<high then swap(data[low],data[high])
5. swap(data[start],data[high])
call QuickSort(data,start,high-1)
7. call QuickSort(data,high+1,end)

o

Merge Sort

v" Merging means combing elements of two arrays to form a new array.

v Simplest way of merging two arrays is first copy all the elements of one array
into new array and then copy all the elements of other array into new array
.Then sort the new array. Another popular technique to have a sorted array
while merging. It is called merge sort.

Example

Stepl:- Let us consider following two arrays A[7] and B[5] are to be merged to form a new
array. The new array say C will have 7+5=12 elements.
1 2 3 45 6

12 |5]7]8]9 [12]13]
A

o0 1 2 3 4 lis pointing to the array element/position currently under consideration

13 /516 [9 [15]

l01234567891011

85

Data Structures and Algorithm 2022

Step2:- Compare A[0] and B[0]; since A[0] <B[0], Move A[0] to C[0]. Move the pointers if
array A and array C

o0phb 1. 2 3 4 5 6

12 |5 |7 |8 [9 [12 [13 |
A

1 2 3 4 is pointing to the array element/position currently under consideration

3|5]6 [9[15]

Step3:- Compare A[1] and B[0]; Now B[0]<A[1]; Move B[0] to C[1] and move the pointer to
next element in an array.

0l123456

12|57 |89 |12]13]
A

0 l 1 2 3 4 is pointing to the array element/position currently under consideration

13]5]6 |9 |15]
B

o 1 2 3 4 5 6 7 8 9 10 11

213 [[[1 [[[[T []

Step 4:- Continuing the same way, the resultant array C is having all the elements of C in sorted
manner.

86

Data Structures and Algorithm 2022

Merge Sort Algorithm
1. ctrA=L1; ctrB=L2; ctrC=L3
2. while ctrA<=U1 and ctrB<=U2 perform steps 3 through 10

{
3. if A[ctrA] <=B[ctrB] then] then

{
4. C[ctrC]=A][ctrA]
5. ctrC=ctrC+1
6. CctrA=ctrA+1

}
7. Else

{
8. C[ctrC]=B]ctrB]
9. ctrC=ctrC+1
10. ctrB=ctrB+1

}
} /*end of while loop */

11. If ctrA > U1l then
{
12. While ctrB<=U2 perform steps 13 through 15
13. { C[ctrC]=B|ctrB]
14. ctrC=ctrC+1
15. ctrB=ctrB+1
b
16. If ctrB>U2 then
17. { while ctrA <=U1 perform steps 18 to 20
18. { C[ctrC]=A][ctrA]
19. ctrC=ctrC+1
20. ctrA=ctrA+1

ks
¥

87

Data Structures and Algorithm 2022

Heap Sort

v The heap is used in an elegant sorting algorithm called heap sort
v Let ‘H’ be heap and ‘N’ be the node. ‘H’ is maintained in the memory by linear
array using sequential representation not the linked representation.
v' ‘H’ is called heap , if each node N of H should satisfy the following property
o Thevalueat N is greater than or equal to the value at any of the descendants.

Steps in Heap Sort

1. Building the heap tree
2. Repeatedly deletion the root element and place in the array.

Example
Apply heap sort for the following numbers
44 30 50 22 60 55 77

STEP 1 [Building the heap tree]

a) Insert 44
44
b) Insert 30
44
30/
c) Insert 50

30 /4\50

Apply Reheap since 44 is less than 50

) /50\44

88

Data Structures and Algorithm 2022

d) Insert 22

50
N
30 4
e

e) Insert 60
50
/ \4
30 4
\ 60

e

Apply Reheap since 60 is greater than 30

50
N
60 4
22/ \30

Once again apply reheap since 60 is greater than 50 also

N
"

89

Data Structures and Algorithm 2022

f) Insert 55
60
50 4
% w4
Apply reheap since 55 is greater than 44
60
50/ 5
w4
g) Insert 77
60

LN

Apply reheap since 77 is greater than 55
6

50/ 77
22/ \O 44/ \5

Once again apply reheap since 77 is greater than 60 also

"
RN

The above tree is called heap tree.

B In the heap tree we can observe that the root element is the greater number among the
given number
B By repeatedly deleting the root element in the heap tree we can perform the sorting.

90

Data Structures and Algorithm 2022

STEP?2[Repeatedly deleting the root element]

Deleting the root element continuously and stored in the array as follows

-
PN

Delete 77

60

5 s
o N
| |

\ | 77
Delete 60
55
/ \
50 4
22///// \\\30
| | | | | 60 | 77
Delete 55
50
/ \‘
30 4
5
| | | | | 55 | 60 | 77

91

Data Structures and Algorithm 2022

Delete 50
44
/
30
5
| | | | 50 | 55 | 60 | 77
Delete 44
30
2/
| | | 44 | 50 | 55 | 60 | 77
Delete 30
22
| | 30 | 44 | 50 | 55 | 60 | 77
Delete 22
| 22 [30 | 44 | 50 | 55 | 60 | 77
Now the array contains sorted elements.
Heap Sort Algorithm
1. Start
2. Fori=1ton

a. Insert data[i] into heap
3. Fori=n-1downtol

a. data[i]<delete max from heap /* delete heap include reheaping also.
4. end

92

Data Structures and Algorithm 2022

Searching:

Searching is a technique to find the data element is present in the data structure or not.

The following are the searching techniques.

1. Linear Search or Sequential Search.
2. Binary Search.

Linear Search or Sequential Search

In linear search each element is compared with the given item to be searched
for one by one. This method which traverses the array sequentially to locate the given item, is
called Linear search or sequential search. It is applicable to both sorted and unsorted arrays

Algorithm

/* Initialize counter by assigning lower bound value of the array */

1. Setctr=L//InC++,Lis0
/* Search for the ITEM */
2. Repeat steps 3 through 4 until ctr >U
3. If Ar[ctr]==ITEM then
{ print “Search Succesfull”
printf ctr,”is the location of “, ITEM
break
}
4. ctr=ctr+1
[*end of repeat */
5. If ctr>U then
printf “Search unsuccessful”

6. end

93

Data Structures and Algorithm 2022

Example: Write the steps to find no 25 in the following array namely A

0 1 2 3 4 5

110 |45 [25 |90 [89 |08 |

Lower Bound (L)=0 UpperBound(U)=5
ITEM=25 [number to be searched]
STEP 1

ctr=L-> ctr=0
while(0>5)

If (A[0] ==ITEM)
10 25
/I since the above condition is false the IF block will not execute

}
ctr=ctr+1->0+1=1

STEP 2

Now ctr=1

while(1<5)
{
If A[1]==ITEM)
45 ==25
/I since the above condition is false the IF block will not execute

}
ctr=ctr+1->1+1=2

STEP 3

Now ctr=2
while(2<5)
{
If A[2]==ITEM)
25 ==25
PRINT “SEARCH SUCCESSFUL”
exit // program will be terminated after the execution of this statement

¥

Now we get the output

“SEARCH SUCCESSFUL?” 2 is the location of the element 25

94

Data Structures and Algorithm 2022

Binary Search

Binary Search is the popular search technique which searches the given ITEM in
minimum possible comparisons. The binary search requires the array, to be scanned , must be
sorted in any order(for instance , it may be ascending order). In binary search, the ITEM is
searched for in smaller segment (nearly half the previous segment) after each stage. For the
first stage, the segment will contain the entire array.

To search for ITEM in a sorted array(in ascending order), the ITEM is compared with
middle element of the segment(i.e., in the entire array for the first time. If the ITEM is more
than the middle element, latter part of the segment becomes new segment to be scanned,; if the
item is less than the middle element, former part becomes new segment to be scanned, the same
process is repeated for the new segment(s) until either the ITEM is found(search successful) or
the segment is reduced to the single element and still the ITEM is not found(search
unsuccessful.

Algorithm

Case 1: Array A [L:U] is stored in the ascending order
/* Initialize the segment variables */

Set beg=L, last=U

REPEAT steps 3 through 6 UNTIL beg>last
mid=INT (beg+last/2)

If [mid]==ITEM then

el

{ print “Search successful”
print ITEM, “found at ““,mid
break
5. If AImid]<ITEM then
beg=mid+1
6. If A[mid] >ITEM then
Last=mid-1
[*end of repeat */
7. If beg !=last
print “Unsuccessful search”
8. End

95

Data Structures and Algorithm 2022

Case 2: Array A[L:U] is stored in the descending order

Set beg=L, last=U

REPEAT steps 3 through 6 UNTIL beg>last
Mid=INT (beg+last/2)

If [mid]==ITEM then

~ RN e

print “Search successful”

print ITEM, “found at “,mid

break

5. If AImid]<ITEM then
last=mid+1

6. If A[mid] >ITEM then
beg=mid+1

[*end of repeat */

7. If beg !=last

print “Unsuccessful search”

8. End

Example: Write the steps to search 44 in the following array
1 2 3 4 5 6 7 8 9 10 11 12

(10 |12 14 |21 [23 |28 [31 |37 [42 |44 [49 |53

beg=1 last=12
Solution:
Step 1
beg=1 last=12
mid=INT(1+12)/2=int (6.5)=6
1 2 3 4 5 6 7 8 9 10 11 12

| | | | | (28 | | | | | |

Step 2

data [mid] i.e., data[6] is 28
28<44 then
beg=mid+1->6+1=7

96

Data Structures and Algorithm

2022

Step 3

7 8 9 10 11 12
I R 7 2 N
beg=7 last=12

Now mid=INT(beg+last)/2=int(7+12/2)=int(9)=9

data [mid] i.e., data[9] is 42
42<44 then
beg=mid+1->9+1=10

Step 4
10 11 12
| (49| |

beg=10 last=12
mid=INT(10+12/2)=int(11)=11
data [mid] i.e., data[11] is 49
49>44 then
last=mid-1->11-1=10

Step 5

mid=INT (beg+last)/2=10+10/2=20/2=10
data[10] ie., 44=44

Search successful at the location number 10

97

Data Structures and Algorithm 2022

%

eferen

o
LN

(¢

(g
(¢

1. Seymour Lipschutz (Schaum's Series), Data Structures, McGraw
Hill Education (India) Private Limited Ltd., New Delhi, Revised
First Edition, 2013.

2. https://www.qgeeksforgeeks.org/stack-data-structure/

3. http://lwww.it.griet.ac.in/wp-content/uploads/2014/08/UNIT -
V_OA.pdf

4. https://medium.com/learning-python-programming-
lanquage/sorting-algorithms-insertion-sort-selection-sort-
quick-sort-merge-sort-bubble-sort-4f23bda6f37a

THANK YOU

8 Vi
“r " X BFY 4 W & P =N

X
X

98

https://www.geeksforgeeks.org/stack-data-structure/
http://www.it.griet.ac.in/wp-content/uploads/2014/08/UNIT-V_QA.pdf
http://www.it.griet.ac.in/wp-content/uploads/2014/08/UNIT-V_QA.pdf
https://medium.com/learning-python-programming-language/sorting-algorithms-insertion-sort-selection-sort-quick-sort-merge-sort-bubble-sort-4f23bda6f37a
https://medium.com/learning-python-programming-language/sorting-algorithms-insertion-sort-selection-sort-quick-sort-merge-sort-bubble-sort-4f23bda6f37a
https://medium.com/learning-python-programming-language/sorting-algorithms-insertion-sort-selection-sort-quick-sort-merge-sort-bubble-sort-4f23bda6f37a

